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1. Introduction

In a series of papers ([2], [3], [4], [5], [6], [7]) the author has
“constructed” progressively longer chains of stationary sets of in-
accessible cardinals. The existence of such chains is independent of
ZFC (indeed the existence of an inaccessible cardinal is), so that
the construction in fact yields a chain must be postulated. This
gives a quantitative theory, justifying the addition of certain ax-
ioms to ZFC, stating that the cumulative hierarchy satisfies certain
principles regarding its extendibility.

Throughout these constructions, the fact that the axiom holds
in Vκ if κ is weakly compact has been observed; the stationary sets
are in the enforceable filter. One goal of this research has been



to obtain a weakly compact cardinal by making the stationary set
chains long enough, using the principle of continuing to extend the
cumulative hierarchy.

In [7] the set chains constructed involve the notion of a Σ1
1 WPS.

A WPS is a well-founded binary relation (WF). In this paper set
chains are obtained from Σ1

1 WF’s, under a certain hypothesis, and
various other facts of interest are proved. Understanding the prop-
erties of Σ1

1 WF’s is of interest in the context of set chains, and in
general.

For a cardinal κ the three structures Lκ, OSκ, and Hκ, may be
considered. In each the Σ1 WF’s, and various subclasses thereof,
may be considered. If V = L these all define the same ranks. It
has been shown [12] that it is consistent that they do not.

Classes involving second order objects may be defined. These
are the classes relevant to constructing stationary set chains. The
classes of the previous paragraph for the cardinal κ+ provide char-
acterizations of them. As will be seen, OSκ has advantages over Hκ

in this role.
In [9] it is claimed that if V = L the ranks of the UΣ1

1l-WPS’s
(defined below) are the same as the ranks of the Σ1

1 WPS’s. The
proof given is incorrect. As of this paper, this question is still open.
Some results given here suggest that the claim may be false.

Let Card denote the class of cardinals, Inac the class of strongly
inaccessible cardinals, and write Inacκ for Inac∩κ. Let Cf(α) denote
the cofinality of an ordinal α.

2. Well-founded relations

A well-founded relation (WF) on a set S is a binary relation
≺ on S such that for any function f : ω 7→ S there is an n such
that f(n+ 1) 6≺ f(n) (i.e., there are no infinite descending chains).
The rank or height Ω(x) of an element x ∈ Fld(≺) is an ordinal,
defined recursively as sup{Ω(y) + 1 : y ≺ x}. Ω(≺) is defined to be
sup{Ω(x) + 1 : x ∈ Fld(≺)}, which is taken as 0 if ≺ is empty.

If x ∈ Fld(≺) let ≺x denote ≺ ∩(x≺ × x≺) where x≺ denotes
{y : y ≺ x}. ≺x is well-founded and Ω(≺x) = Ω(x).

Let Υ(≺) denote the supremum of the lengths of the ascending
chains in ≺. It is readily seen that Υ(≺) ≤ Ω(≺); it is well-known
[16] that strict inequality can hold.



Recalling the definition from [7], a WPS on a set S is a binary
relation � on S satisfying the following axioms:

T1. A � B ∧ B � C ⇒ A � C
T2. A � B ⇒ A � A
T3. A � B ⇒ B � B
T4. A � A ∧ B � B ⇒ (A � B ∨B � A)
F. For all functions f with domain ω there is an n such that

f(n+ 1) � f(n) ⇒ f(n) � f(n+ 1)

The strict part is the relation ≺ where A ≺ B iff A � B∧¬B � A;
axiom F implies that it is well-founded. Let Ω(�) = Ω(≺). For
x ∈ Fld(�) let �x denote � ∩(x≺ × x≺); this is readily seen to be
a WPS.

Theorem 1. For a WPS �, Υ(≺) = Ω(≺).

Proof. Let ≡ be the relation “x ≤ y ∧ y ≤ x”. It is readily seen
that ≡ is a congruence relation, the quotient ≺ / ≡ is a well-order,
and Υ(≺) = Υ(≺ / ≡) = Ω(≺ / ≡) = Ω(≺).

A WOS (well-order on a subset) is a WPS where A � B ∧B �
A⇒ A = B. In a WOS ≺ may be defined by “A � B∧A 6= B”. For
a WOS � and an x ∈ Fld(�), �x is a WOS. A WP (well-preorder)
is a WPS where axioms T2-T4 are replaced by A � B ∨B � A. A
WO (well-order) is a WPS which is both a WOS and a WP. For a
WO the rank is also called the order type.

3. OSκ

The structure OSκ is defined in [7]; an earlier version, Ks
κ, may

be found in [2]. To review the definition, let LOS be the language
with two sorts, Ord and Seq. Variables of Ord sort are denoted α, β,
etc., and those of Seq sort s, t, etc. The functions and relations are:

0, 1, α + β, α < β,
Dom(s) (of sort Ord), Elem(s, α) (of sort Ord),

and equality on Ord and on Seq. As in [2], s(α) may be written for
Elem(s, α) and |s| for Dom(s).

The version in [7] has also the function symbol Rstr(s, α, β) (of
sort Seq). The graph of this function has a ∆0 definition in the
smaller language, namely, P ∧∀γ < |t|(t(γ) = s(α+γ)∨¬P ∧ t = ∅
where P is β = α+ |t| ∧ β < |s|.



Bounded quantifiers in LOS are those of the form ∀γ < β or
∃γ < β where β is a term. ∆0, Σ1, and Π1 formulas are defined
as usual, where free variables and unbounded quantifiers may be of
either sort.

For κ ∈ Card OSκ is the structure for LOS where Ord is inter-
preted as κ and Seq as {f : α 7→ κ : α < κ}. The functions and
relations have their self-evident interpretations; Elem has value 0 if
the index are out of range.

Various facts of interest can be proved to hold in OSκ for any
κ. Indeed, an axiom system AOS is given in [7], and basic facts can
be proved in it. For the version above, the axiom for Rstr may be
omitted.

Lemma 2. a. The Σ1 predicates are closed under bounded quan-

tification.

b. If G : Seq 7→ Ord is a Σ1 function then there is a Σ1 function

F : Ord 7→ Ord such that for all α F (α) = G(F ↾ α).

Proof. This is lemma 21 of [7]. An examination of the proof
shows that it can be carried out in AOS.

Note also that α < ω is a ∆0 predicate, and it is not diffi-
cult to show that Peano Arithmetic is interpretable in AOS. The
sort “integer” may be added to the language, without changing the
complexity of formulas; n,m, . . . will be used to denote integers.

The rank of a WF on Seq is less than (κ<κ)+. That of a WF on
Ord is less than κ+. When κ = λ+ the bounds become ((λ+)λ)+ =
(2λ)+ and λ++

The language Lf
OS is also of interest; some consideration may be

found in [9]. This adds second order function variables; these take
an ordinal argument and produce an ordinal value. OSκ may be
considered as a structure for this language by interpreting second
order function symbols as elements of N where N denotes κκ. As
above, t = Rstr(F, α, β) is a ∆0

0 definable predicate.

Say that a formula of Lf
OS is Σ1P

1 if it is of the form ∃~Fφ where
φ is Π0

1.

Theorem 3. In the Σ1P
1 formulas over OSκ for κ ∈ Card, multi-

ple second order existential quantifiers may be combined. The Σ1P
1

predicates are closed under quantification over variables of Ord sort,

and existential quantification over variables of Seq sort.



Proof. A formula ∃F0∃F1φ(F0, F1) where φ is Π0
1 may be written

as ∃Gφ′ where φ′ is obtained from φ by replacing Fi(τ) by G(τ+τ+
i) (where τ is a term). A formula ∃α∃Fφ(α, F ) may be written as
∃Gφ′ where φ′ is obtained from φ by replacing α by G(0) and F (τ)
by G(1 + τ). A formula ∀α∃Fφ(α, F ) may be written as ∃G∀αφ′

where φ′ is obtained from φ by replacing F (τ) by G(J0(α, τ)) where
J0 is the Godel pairing function. φ′ is Π1

1 by lemma 21.a of [7]. A
formula ∃s∃Fφ(s, F ) may be written as ∃Gφ′ where φ′ is obtained
from φ by replacing s by Rstr(G,G(0), 1+G(0)) and F (τ) by G(τ+
1 +G(0)).

Theorem 4. Suppose κ is regular uncountable and κ<κ = κ. The

Σ1P
1 predicates are closed under universal quantification over vari-

ables of Seq sort.

Proof. Let β1 = |s|, β2 = supγ<β1
s(γ), β3 = sup(β1, β2), and

β(s) =
∑

γ≤β3
γ · γγ. Let C(H1, H2) denote ∀s∃α < β(s)s =

Rstr(H2, H1(α), H1(α + 1)). Let α = X(H1, H2, s) denote s =
Rstr(H2, H1(α), H1(α+1))∧∀β < αs 6= Rstr(H2, H1(β), H1(β+1)).
A formula ∀s∃Fφ(α, F ) may be written as ∃H1∃H2∃G(C(H1, H2)∧
∀sφ′ where φ′ is obtained from φ by replacing F (τ) by G(J0(X(H1,
H2, s), τ)).

The analog of this theorem holds for Σ1L
1 predicates (defined

below); proofs may be found in [13],[9].

Lemma 5. a. For any κ ∈ Card, a predicate R ⊆ N k defined

in OSκ by a Σ0
1 formula of Lf

OS
is open.

b. If κ is regular uncountable and κ<κ = κ the converse holds.

Proof. Part a follows by theorem 11 of [9]. For part b, suppose
R ⊆ N k is open. R can be specified by a subset DR of (κ<κ)k.
Since κ<κ = κ, DR can be coded as an element FR of N using
a “separator” value. Then G ∈ R iff “there is an s such that FR

witnesses s ∈ DR and s is a prefix of G”; this statement is is Σ0
1.

Note that part b answers a question noted following theorem 15
of [9], and renders that theorem irrelevant.

4. Classes over κ



In this section, let κ be a cardinal. Let L∈ be the language of
set theory. Let Lκ be the κth level of the constructibility hierarchy,
considered as a structure for L∈. Let Hκ be sets whose transitive
closure has cardinality less than κ, considered as a structure for L∈.

Classes of relations C will be defined, on a domain D (i.e.,
subsets of Dk for some k). If defined by formulas the free variables
are restricted to D; parameters are also in D, unless otherwise
specified.

The following classes are defined.
C
0

: D = κ, Σ1 in L∈ over Lκ.
C
1

: D = Ord, Σ1 in LOS over OSκ.
C
1h

: D = κ, Σ1 in L∈ over Hκ.
C
2

: D = Seq, Σ1 in LOS over OSκ.
C
2h

: D = κ<κ, Σ1 in L∈ over Hκ.
C
2H

: D = κ<κ, Σ1 in L∈ over Hκ with parameters in Hκ.
C
3

: D = Hκ, Σ1 in L∈ over Hκ.
Say that class C is transformable to class C ′, written C  C ′,

if there is an injection j : D 7→ D′ which induces a map from C to
C ′. If C is a class of WF’s let Υ(C) = sup(Υ(≺)) :≺∈ C}. For a
class of relations C, let Υ(C) denote Υ(C≺) where C≺ is the WF’s
of C. Note that if C  C ′ then Υ(C) ≤ Υ(C ′).

Let C ′
1

be as C
1

, but with unrestricted free variables and pa-
rameters. Because there is a Σ1 bijection between κ and Lκ, these
may be used interchangeably.

Let Ff , ∈f , and =f be as in [9]. L∈ may be interpreted in LOS,
by interpreting ∈ as ∈f and = as =f . Denote this interpretation as
If .

Lemma 6. For any formula φ of L∈, φ(Ff(α1), . . . , Ff (αk)) holds

in Lκ iff φIf (~α) holds in OSκ. If φ is ∆0 then φIf is ∆1.

Proof. The first claim follows by induction on φ. The second
follows by induction, using the fact, noted in [9], that ∈f and =f

are ∆1; and lemma 12 of [9].

There is also an interpretation of LOS in L∈. Ord is interpreted
as the ordinals, and Seq as functions with domain an ordinal and
ordinal values. Denote this interpretation as I∈. The formulas for
the symbols of LOS are ∆0, except the graph of α+β, which is ∆1,
and so ∆0 formulas translate to ∆1 formulas.



Theorem 7.

C
0

 C
1

 C
2  

C
1h

 C
2h

 C
2H

 C
3

Thus, Υ(C
0

) ≤ Υ(C
1

) ≤ Υ(C
2

) ≤ Υ(C
3

).

Proof. Let φ be a Σ1 formula defining a WF in Lκ. By lemma
6, φIf defines a Σ1 WF in OSκ, of the same rank. Further φIf has
ordinal arguments, and ordinal parameters can be chosen. This
proves C

0

 C
1

. C
1

 C
2

follows by interpreting ordinals as
length 1 sequences. C

1

 C
1h

and C
2

 C
2h

follow using I∈.
C
1h

 C
2h

 C
2H

 C
3

follows trivially.

As will be seen below, more can be shown if κ is a successor
cardinal.

Theorem 8. If V = L then Υ(C
0

) = Υ(C
3

).

Proof. This follows because if V = L then Hκ = Lκ (corollary
5.2.7 of [10]).

By cardinality, Υ(C
1

) < κ+. As will be seen below, for suitable
κ, Υ(C

2

) ≥ κ+ is consistent.

5. Coding formulas

Formulas with parameters from Seq can be coded as elements of
Seq. Formulas with parameters from Ord can be coded as elements
of Ord. Both codings will be given. Each involves a coding of finite
sequences.

In Seq a sequence (or list) of elements of ordinal length can read-
ily be coded as an element; this has uses, and finite sequences are a
special case. The list sγ : γ < δ may be coded as δ⌢η⌢

0 . . .⌢ s⌢
0 . . . ,

where ηγ =
∑

ζ≤γ |sζ|. The statement that s occurs in a list l is
∆0. This coding may be used for a pairing function on sequences.
Let JS(s, t) denote the code for the pair s, t; this function has a ∆0

graph.
In Ord a finite sequence of elements can be coded as an element

using the Godel pairing function. The sequence αi : i < n may be



coded as J0(n, J0(α1, . . . J0(αn−1, n) . . . )). Functions manipulating
these codes are ∆1.

It is well-known that a formula φ without parameters can be
coded as an integer pφq, so that syntactic functions are ∆1 in the
language of arithmetic, and hence in LOS over OSκ for κ ∈ Card.

Suppose φ is a formula and x1, . . . , xk are its free variables in
alphabetic order. Suppose vi is a value of the sort of xi. Let l be
the code for v1, . . . , vk. The sentence with parameters φ(v1, . . . , vk)
can be coded by replacing l(0) = k by pφq. This may be done for
either the codes over Seq or the codes over Ord. Over Seq, a value
vi of sort Ord may be considered a sequence of length 1, and if
k = 0 the code is a sequence of length 1. Over Ord, if k = 0 the
code may be taken as J0(pφq, 0).

The code just described will be denoted pφ(v1, . . . , vk)q. Let Φ
denote the sentences with parameters and I their codes (although
as has been observed by some authors the latter can be used for
the former).

Theorem 9. Over Seq or Ord, there is a ∆1 formula Tru0(c) such

that for any κ ∈ Card, in OSκ, for any ∆0 φ(~v) ∈ Φ, φ(~v) ⇔
Tru0(pφ(~v)q).

Proof. The proof will use “partial truth assignments”; see defi-
nition 1.71 of [11] for a related concept. A partial truth assignment
is a list in 4 parts, a list of terms, a list of their values, a list of for-
mulas, and a list of their truth values, satisfying certain restrictions.
These restrictions may be stated by a ∆1 formula PTA(a).

PTA may be broken into cases; one example will be given, and
the rest left to the reader. For all terms t = t1 + t2 occurring in
a, for i = 1, 2, either ti is a variable or ti (with value list adjusted)
occurs in a; in addition v = v1 + v2 where v is the value of t and
for i = 1, 2 vi is the value of ti.

Tru0(c) may be stated in Σ1 form as “for some a, PTA(a) and
c occurs in a and c has value 1 in a”. Tru0(c) may be stated in Π1

form as “for all a, if PTA(a) and c occurs in a then c has value 1
in a”.

Corollary 10. Over Seq or Ord, there is a Σ1 formula Tru(c) such

that for any κ ∈ Card, in OSκ, for any Σ1 sentence with parameters

φ(~v), φ(~v) ⇔ Tru(pφ(~v)q).



Proof. This follows by a standard argument.

In Lκ (or Hκ, or any admissible set) an ordered pair of elements
may be coded as the ordered pair in the set. Sentences with pa-
rameters may be coded as in the case of OSκ with parameters from
Ord. It is a standard fact of admissible set theory that there is a
Σ1 predicate Tru(c) which holds for a code c of a Σ1 sentence with
parameters iff the sentence is true (see proposition V.1.8 of [1] for
example). Although not the usual method, the method of corollary
10 can be used to prove this fact. It is only necessary to observe
that in an admissible set A, any ∆0 sentence with parameters has
a partial truth assignment in A.

A formula φ(~αp, ~α,~sp, ~s), where the free variables are listed in
alphabetic order, with values vOi for the variables αpi, and values
vSi for the variables spi, may be coded by replacing l(0) by pφq in
the code l for the list ~vO, ~vS. Similar remarks hold over Ord.

In an expression pφq a parameter of φ depending on a value α
may be denoted α̊.

6. Constructive ordinals in Seq

This section provides adaptations of various facts about con-
structive ordinals (as found in [15] for example) to OSκ for κ ∈
Card. Essentially the same development can be carried out for Hκ,
but this is omitted.

Let Φ1 denote the Σ1 formulas with no parameters and a single
free variable of sort Seq. Let I1 ⊆ ω denote the integers which code
elements of Φ1. For e ∈ I1 let φe denote the formula coded by e
and let We denote the subset of Seq defined by φe.

Let F0 denote the functions f : Seq 7→ Seq which are total and
whose graph is Σ1 (and hence ∆1) without parameters in LOS. Let
F1 = {f ∈ F0 : f [I1] ⊆ I1}.

Theorem 11. a. For any e0 ∈ I1 there is an e1 ∈ I1 such that

We1
(s) ⇔We0

(JS(e1, s)) for all s.
b. Suppose f ∈ F1; then there is an e ∈ I1 such that Wf(e) = We.

c. Suppose <⊆ Seq × Seq is well-founded and f ∈ F1. Suppose

∀e ∈ I1∀x ∈ Fld(<)(∀x′ < x∃!yWe(JS(x′, y)) ⇒ ∃!yWf(e)

(JS(x, y))). Suppose e ∈ I1 is such that Wf(e) = We. Then

∀x ∈ Fld(<)∃!yWe(JS(x, y)).



Proof. For part a, let Tru1(e, s) = Tru(F (e1, s)) where for e ∈
I1 F (e, s) equals pφe(s)q, that is, e⌢|s|⌢s. Let f ∈ F1 be such
that for any e ∈ I1 f(e) = pTru1(Ne, Js(Ne, s))q where Ne is the
numeral for e and s is the free variable of φe; note that Wf(e)(s) ⇔
We(Js(e, s)). Let e2 = pφe0

(JS(f(P1(t)), P2(t)))q where P1, P2 are
the “projection functions” for JS; note thatWe2

(JS(e, s)) ⇔ We0
(JS

(f(e0), s)). Let e1 = f(e2). Direct computation verifies that the re-
quirement on e1 is satisfied.

For part b, let e0 = pTru1(f(P1(t)), P2(t))q; note that We0

(JS(e1, s)) ⇔ Wf(e1)(s). Now choose e1 as in part a.
For part c, if there is an x ∈ Fld(<) such that ¬∃!yWe(JS(x, y)))

let x be a minimal such. Then ∃!yWf(e)(JS(x, y)), whence ∃!yWe

(JS(x, y)), a contradiction.

Let<O be the predicate on Seq×Seq, which is the least predicate
satisfying the following conditions, where O denotes Fld(<O).

1. ∅ <O s where Dom(s) = 1 and s(0) = 0.
2. If s ∈ O then s <O 0⌢s.
3. Suppose θ(γ, t, ~p) is a Σ1 formula with parameters ~p defining a

total function f : Ord 7→ O such that α < β ⇒ f(α) <O f(β),
and let s = 1⌢pθ(γ, t, ~p)q. Then for all α, f(α) <O s.

4. Suppose δ is a limit ordinal and θ(γ, t, ~p) is a Σ1 formula with
parameters ~p defining a predicate which is a total function
f : δ 7→ O when restricted to arguments α < δ, such that
α < β < δ ⇒ f(α) <O f(β), and let s = 2⌢δ⌢pθ(γ, t, ~p)q.
Then for all α < δ, f(α) <O s.

5. <O is transitive.

In cases 3 and 4 call f the defining function.

Theorem 12. a. <O is well-founded.

b. If t1 <O s and t2 <O s then t1 = t2 or t1 <O t2 or t2 <O t1.
c. If 0⌢s ∈ O then there is no t ∈ O such that s <O t <O 0⌢s.
d. If 1⌢s ∈ O where f is the defining function then there is no

t ∈ O such that for all α f(α) <O t <O 1⌢s.
e. If 2⌢δ⌢s ∈ O where f is the defining function then there is

no t ∈ O such that for all α < δ f(α) <O t <O 2⌢δ⌢s.

Proof. Let O0 = {∅}. Let Oα+1 = Oα together with the el-
ements added by clauses 2-4 of the definition. For α ∈ Lim let
Oα = ∪β<αOβ. Define the rank of s ∈ O to be the least α such that



s ∈ Oα; then α = β+1 for some β. It is readily seen that if u <O s
then there is a t ∈ Oβ such that u ≤O t <O s where t <O s follows
by clauses 2-4. The theorem follows.

By the theorem, for s ∈ O the ordinal Ω(s) may be defined
to be Ω{〈t1, t2〉 : t1 <O t2}. Further, letting f be the defining
function, Ω(∅) = 0, Ω(0⌢s) = Ω(s) + 1, Ω(1⌢s) = supα Ω(f(α)),
and Ω(2⌢δ⌢s) = supα<δ Ω(f(α)).

Theorem 13. There is a function p ∈ F0 such that for s ∈ O,

p(s) ∈ I1 and Wp(s) = {t : t <O s}.

Proof. Let f ∈ F0 be such that for e ∈ I1, Wf(e)(JS(s, t)) iff
t = pθq where θ ∈ Φ1 is a formula defined by cases as follows; r is
used for the free variable of θ.

If s = ∅ then θ is r 6= r.
If s = 0⌢s′ then θ is r = s′ ∨ ∃t′(φe(JS(s′, t′)) ∧ Tru1(t

′, r)).
If s = 1⌢s′ then θ is ∃α∃s2∃t2(Tru2(s

′, α, s2) ∧ φe(JS(s2, t2)) ∧
Tru1(t2, r)) where Tru2 is a suitable variation of Tru.

If s = 2⌢δ⌢s′ then θ is as in the previous case, except ∃α is
replaced by ∃α < δ.

Note that pθq is actually a formula defining this element of Seq
from s, etc. Then f satisfies the hypotheses of theorem 11.c. Let
p be the function whose graph is defined by We for e as in the
conclusion of theorem 11.c. The theorem follows.

Theorem 14. There is a function q ∈ F0 such that for s ∈ O,

q(s) ∈ I1 and Wq(s) = {JS(t1, t2) : t1 <O t2 <O s}.

Proof. The proof is the same as that of the preceding theorem,
except that in the case s = 0⌢s′ θ is r = s′ ∨ ∃t′(φe(JS(s′, t′)) ∧
Tru1(t

′, r)).

Theorem 15. There is a function s1+Os2 with Σ1 graph, such that

if s1, s2 ∈ O then s1 +O s2 ∈ O and Ω(s1 +O s2) = Ω(s1) + Ω(s2);
and also if s1 +O s2 ∈ O then s1, s2 ∈ O.

Proof. For convenience write We(~x) for We(F (~x)) where F is an
appropriate sequence coding function. Let ⊥ denote the sequence
s of length 1 where s(0) = 3. Let f ∈ F0 be such that for e ∈ I1,
Φf(e)(s1, s, t) satisfies the following clauses.

s = ∅: t = s1.



s = 0⌢s′: ∃t′(φe(s1, s
′, t′) ∧ (t′ = ⊥ ∧ t = ⊥∨ t = 0⌢t′)).

s = 1⌢s′: if s′ = pψ(~q, α, y)q then t = 1⌢t′ where t′ =
p∃y′(ψ(~q, α, y′) ∧ φe(s1, y

′, t))q. else t = ⊥.
s = 2⌢δ⌢s′: as in the previous case, except t = 2⌢δ⌢t′.
s(0) /∈ {0, 1, 2}: t = ⊥.
Let e be as in the conclusion of theorem 11.c; then +O has graph

We.

Other facts as in theorem I.3.4 of [15] also follow. Note that for
s ∈ O Ω(s) < κ++, so in view of the remarks following theorem 8,
in some models, this version of O does not represent every Σ1 WF
on Seq.

7. Constructive ordinals in Ord

The development of the previous section can be carried out us-
ing formulas with free variables and parameters in Ord. For con-
venience the same notation is used. Following is a list of changes
which are needed. The following changes are needed for theorem
11.

• Free variables s, t, . . . are changed to α, β, . . . .
• J0 is used rather than JS.
• Formulas of Φ1 have a single free variable of sort Ord.
• I1 is unchanged.
• F0 is the f : Ord 7→ Ord which are total and whose graph is

Σ1.
• F1 is as before.
• In theorem 11.c <⊆ Ord × Ord.
• In the proof of theorem 11.a, F (e, s) equals pφe(s)q, that is,
J0(e, s).

Let <O be the predicate on Ord×Ord, which is the least predi-
cate satisfying the following conditions, where O denotes Fld(<O).

1. 0 <O 1.
2. If α ∈ O then α <O α · 4 + 1.
3. Suppose θ(γ, β, ~π) is a Σ1 formula with parameters ~π defining

a total function f : Ord 7→ O such that α < β ⇒ f(α) <O

f(β), and let α = pθ(γ, β, ~π)q·4+2. Then for all γ, f(γ) <O α.
4. Suppose δ is a limit ordinal and θ(γ, β, ~π) is a Σ1 formula with

parameters ~π defining a predicate which is a total function



f : δ 7→ O when restricted to arguments γ < δ, such that α <
β < δ ⇒ f(α) <O f(β), and let α = J0(pθ(γ, β, ~π)q, δ) · 4+3.
Then for all γ < δ, f(γ) <O α.

5. <O is transitive.

Theorems 13, 14, 15, and the properties of Ω hold, with the
following changes. Free variables s, t, . . . are changed to α, β, . . . .
Cases 0⌢s, 1⌢s, and 2⌢δ⌢s are changed to α · 4 + 1, α · 4 + 2, and
J0(α, δ) · 4 + 3. In the proof of theorem 15, ⊥ denotes 4.

8. Constructive ordinals in Lκ

Because Lκ is a “recursively listed” admissible set (see [1]), con-
structive ordinals in Lκ for κ ∈ Card may be taken as elements of
either κ or Lκ. Choosing them in κ makes the development more
similar to that of the preceding section. In particular, the same
sentence coding may be used. The following changes are needed for
theorem 11.

• Free variables are ordinals α, β, . . . (i.e., restricted to range
over Ord), and parameters are in κ.

• Formulas of Φ1 have a single Ord free variable.
• I1, F0, and F1 are as before.
• In theorem 11.c <⊆ κ× κ.

<O on Ord×Ord is defined as in the previous section. Theorems
13, 14, 15, and the properties of Ω hold as before.

Let I1p be the codes of the Σ1 formulas with ordinal parameters
and an ordinal free variable. Let φη be the formula with code η and
Wη the set defined by φη.

Theorem 16. There is a function g ∈ F0 such that for η ∈ I1p, if

Wη ⊆ O then g(η) ∈ O, and for all α ∈Wη, Ω(α) < Ω(g(η)).

Proof. In the integer case, this is lemma I.4.1 of [15]. Suppose
φη is ∃xψ(x, α, π) (let g(η) = 4 if φ is not of this form). Let r
be the function where r(γ) equals P2(γ) if ψ(Ff(P1(γ)), P2(γ), π),
else 0. Let θ(α, β) be the formula ∃sθ′(s, α, β) where θ′ states the
following.

|s| = α + 1, s(α) = β, and for γ ≤ α the following hold.
s(0) = r(0).
If γ = γ′ + 1 then s(γ) = s(γ′) +O r(gamma).



If γ ∈ Lim then s(γ) = (J0(p̊s(ζ) = ξq, γ) · 4 + 3) +O r(γ).
Now let g(η) = (pθq · 4 + 2) +O 1.

Theorem 17. There is a function h ∈ F0 such that for η ∈ I1p, if

Wη(α, β) is well-founded then h(η) ∈ O, and Ω(Wη) ≤ Ω(h(η)).

Proof. In the integer case, this is lemma I.4.3 of [15]. For η ∈ I1p

and γ < κ let τ(η, γ) = pφη̊(ξ1, ξ2) ∧ ξ1 < γ̊ ∧ ξ2 < γ̊q. Note that if
Wη is a nonempty well-founded relation then Ω(Wτ(η,γ)) < Ω(Wη)
for all γ and Ω(Wη) = supγ<κ Ω(Wτ(η,γ)) + 1.

For e ∈ I1 and η ∈ I1p let t(e, η) be the code for the formula in
the free variable β, ∃γ∃δφη̊(γ, δ) ∧ ∃γφe(τ(η̊, γ), β).

Let f ∈ F1 be such that Wf(e) = {〈η, g(t(e, η))〉}. Let e0 be such
that Wf(e0) = We0

. Let h be the function where h(η) = g(t(e0, η)).
Then We0

is the graph of h.
If We is empty the theorem is readily seen. Otherwise Wt(e0,η) =

{h(τ(η, γ)) : γ < κ}, and so by theorem 16,
h(τ(η, γ)) <O g(t(e0, η)) = h(η).

By induction on Ω(Wη), Ω(Wτ(η,γ)) ≤ Ω(h(τ(η, γ))) < Ω(h(η)).
Thus, Ω(Wη) = supγ Ω(Wτ(η,γ)) + 1 ≤ Ω(h(η)).

For i = 0, 1, 2 let O
i

be the version of O defined in sections 7,6,5
respectively. For a class C of relations let C-WF be the WF’s of
C, and similarly for C-WPS, C-WOS, and C-WO (by an earlier
convention Υ(C-WF) is denoted Υ(C)).

Theorem 18. a. Ω(O
0

) ≤ Ω(O
1

) ≤ Ω(O
2

).
b. For i = 0, 1, 2, Ω(C

i

-WO) ≤ Ω(O
i

) ≤ Ω(C
i

-WOS)
≤ Ω(C

i

-WPS) ≤ Υ(C
i

).
c. Υ(C

0

) ≤ Ω(O
0

) and Ω(C
0

-WOS) ≤ Ω(C
0

-WO).

Proof. For part a, a O
0

code can be transformed to a O
1

code,
and a O

1

code can be transformed to a O
2

code.
For part b, Ω(O

i

) ≤ Ω(C
i

-WOS) follows by theorems 14 and 12.
The other inequalities are immediate.

For part c, Υ(C
0

) ≤ Ω(O
0

) follows by theorem 17.
Suppose R(α, β) ∈ C

0

-WOS. If Ω(R) < κ then clearly Ω(R) <
Ω(C

0

-WO), so suppose Ω(R) ≥ κ. Fld(R) is defined by a formula
∃γψ(γ, β, ~π) where ψ is ∆0. Let g : κ 7→ κ be the function where
g(α) = β iff there is an s such that Dom(s) = α and s(α) = β
and ∀γ ≤ αψ(P1(s(γ)), P2(s(γ)), ~π) and ∀γ < δ ≤ α(s(γ < δ ∧



P2(s(γ)) 6= s(P2(δ)))). The relation R(g(α), g(β)) is a WO of the
same rank as R. Thus, Ω(C

0

-WOS) ≤ Ω(C
0

-WO).

As noted in section 5, for suitable κ, Ω(O
2

) < Ω(C
2

-WO) is
consistent. Whether Ω(O

1

) < Ω(C
1

-WO) can be consistent is a
question of interest.

9. Classes over κ+

For κ ∈ Card, a class C of section 4 over κ+ will be denoted
Ĉ. Further classes of interest may be defined using second order
methods over κ.

As in [8], let Ls
∈ denote L∈ with set variables added, and let Lf

∈

denote L∈ with function variables added. Recall Lf
OS from section

3. Let IOS denote the interpretation of LOS in Ls
∈ given in [7]. Say

that a formula is ΣI
1 if it is the translation under IOS of a Σ1 formula

of LOS. As in [9], let Ng denote (Vκ)
Vκ, let N denote κκ, and let

Σ1L
1 denote the Lusin class in either N k

g or N k for an integer k.
The following class is defined.
C
4

: D = N , Σ1P
1 in Lf

OS over OSκ.

Theorem 19. Suppose κ ∈ Card. Then Ĉ
2H

 C
4

 Ĉ
2

. Thus,

Υ(Ĉ
2

) = Υ(Ĉ
2h

) = Υ(Ĉ
2H

) = Υ(C
4

).

Proof. Suppose R ⊆ N k is defined in Hκ+ by a Σ1 formula with
parameters.

An element F ∈ N may be considered a binary relation R on κ,
where R(α, β) iff F (J0(α, β)) 6= 0. Recall from [7] that the Godel
pairing function J0 is ∆0

1. Given such a relation F∈, the notation
α∈̃β will be used for F∈(J0(α, β)) 6= 0.

Let P1(F∈) hold iff as a binary relation F∈ is well-founded and
extensional. F∈ is well-founded iff ∀s(Dom(s) = ω ⇒ ∃n < Dom(s)

(s(n + 1) /̃∈s(n))). F∈ is extensional iff ∃G∀α, β(α 6= β ⇒ (G(J0(α,

β)) /̃∈α⇔ G(J0(α, β))∈̃β)). Thus, P1 is Σ1P
1 .

A formula φ of the language of set theory, with value ~α where
αi < κ for the free variables, can be coded as a value pφ(~α)q which
is less than κ. This can be done so that formulas defining predicates
of interest are ∆0

1.
Let P2(F∈, α) hold iff φ is true in F∈ where α = pφq. P2 may be

written as ∃G1, G2(∀βP ′
2(G1, G2, F∈, β) ∧ G1(α) 6= 0) where P ′

2 is



a ∆0
1 formula stating that G1(β) satisfies the recursion for a truth

value assignment to the sentence with Godel number β. This may
be broken into cases. Most of these are given in example 1.20
of [14]. The case β = p∃xψq may be written as G1(β) 6= 0 ⇔
G1(pψG2(β)/xq) 6= 0. Thus, P2 is Σ1P

1 .
The notation JφK will be used for P2(F∈, pφq).
For X ∈ N let P3(F∈, X, α) hold iff α represents X in F∈.

Following lemma 1.25 of [14], let P 1
3 (F∈, Fκ, ακ) be the Σ1P

1 formula
∃F r

κ(∀α, β(α < β ⇒ Fκ(α)∈̃Fκ(β)) ∧ ∀α(Fκ(α)∈̃ακ) ∧ ∀α(α∈̃ακ ⇒
Fκ(F

r
κ(α)) = α)). Then P3 may be written as ∃Fκ, ακ(P

1
3 (F∈, Fκ,

ακ) ∧ Jα̊ : α̊κ 7→ α̊κK ∧ ∀β, γ(X(β) = γ ⇒ Jα̊(β̊) = γ̊K ∧ X(β) 6=
γ ⇒ Jα̊(β̊) 6= γ̊K)). Thus, P3 is Σ1P

1 .
An element p ∈ Hκ+ can be coded as an element P ∈ N

by enumerating the transitive closure of {p} as xα and letting
P (J0(α, β)) 6= 0 iff xα ∈ xβ. Let P4(F∈, P, α) hold iff α repre-
sents P in F∈. P4 may be written as ∃G∃β(∀γ, δ(P (J0(γ, δ)) 6=

0 ⇔ (G(γ)∈̃β ∧G(δ)∈̃β ∧G(γ)∈̃G(δ)))∧α∈̃β ∧ ∀γ(γ∈̃β ⇒ α/̃∈γ)).
Thus, P4 is Σ1P

1 .

Suppose φ( ~X, ~p) is a Σ1 formula, the Xi are restricted to range
over N , and the pi are elements of Hκ+. Using the Downward
Lowenheim-Skolem theorem, φ holds in Hκ+ iff (using obvious nota-

tion) ∃F∈, ~αX , ~αp(P1(F∈)∧P3(F∈, ~X, ~αX)∧P4(F∈, ~P , ~αp)∧P2(F∈, pφ
(~αX , ~αp)q)) holds in OSf

κ.
Thus, R is defined in OSκ by a Σ1P

1 formula with second order
parameters. and so Ĉ

2H

 C
4

.
C
4

 Ĉ
2

follows because there is an interpretation of Lf
OS in

LOS using the parameter κ which induces such a transformation.
Ord is interpreted as κ, Seq is interpreted as {s ∈ Seq : Dom(s) <
κ ∧ Ran(s) ⊆ κ}. N is interpreted as {s ∈ Seq : Dom(s) = κ ∧
Ran(s) ⊆ κ}.

The second claim follows by the first claim and theorem 7.

For a Σ1L
1 version of Ĉ

2H

 C
4

see proposition 2.4 of [13].

Theorem 20. Suppose κ ∈ Card. Then Ĉ
1H

 Ĉ
1

, and so Υ(Ĉ
1H

)
= Υ(Ĉ

1

),

Proof. The theorem is proved by modifying the composite
transformation Ĉ

2H

 C
4

 Ĉ
2

. For ξ an ordinal in Hκ+ let
P5(F∈, ξ, α) hold iff α represents ξ in F∈. This may be written as



∃so, s
r
o(Dom(s) = ξ ∧ ∀β < Dom(s)(so(β)∈̃α) ∧ ∀β, γ < ξ(β < γ ⇒

so(β)∈̃so(γ)) ∧ ∀β(β∈̃α ⇒ so(s
r
o(β)) = β)). Thus, P5 is Σ1 over

OSκ+ .
Suppose φ(~ξ, ~p) is a Σ1 formula over Hκ+ , the ξi are restricted

to range over ordinals, and the pi are ordinals. Then φ holds in Hκ+

iff ∃F∈, ~αξ, ~αp(P1(F∈)∧P5(F∈, ~ξ, ~αξ)∧P5(F∈, ~p, ~αp)∧P2(F∈, pφ(~αξ,

~αp)q)) holds in OSκ+ . This shows Ĉ
1h

 Ĉ
1

.
The second claim follows from the first, and theorem 7.

As noted in [9] it is consistent that Υ(Ĉ
2

) > Υ(Ĉ
1

). By theorem
1.1 of [12], if κ is a regular uncountable cardinal with κ<κ = κ then
it is consistent that there is a Σ1 well-order of Hκ+ of order type
≥ κ++, whence that there is a Σ1 WOS with field κκ of rank ≥ κ++.

For κ ∈ Card, the following classes of relations are defined.
C
5

: D = (Vκ)
Vκ, Σ1

1 in Lf
∈ over Vκ.

C
6

: D = Ng, Σ1L
1 .

C
7

: D = N , Σ1L
1 .

C
8

: D = ISeq, ΣI
1 over Vκ.

C
9

: D = 2Vκ, Σ1
1 in Ls

∈ over Vκ.

Say that C
I
 C ′ provided κ is inaccessible, and C

B
 C ′ pro-

vided κ is regular uncountable and κ<κ = κ.

Theorem 21. C
5

 C
6

I
 C

7

B
 C

4

 Ĉ
2

 C
8

 C
9

 C
5

,

and so for κ ∈ Inac, Υ(C
5

) = Υ(C
6

) = Υ(C
7

) = Υ(C
4

) = Υ(Ĉ
2

) =
Υ(C

8

) = Υ(C
9

).

Proof. Suppose R( ~H) is a relation in C
5

; by corollary 5 of [8] R

is defined by a formula ∃~F∀~xψ(~x, ~F , ~G, ~H) where ψ is a ∆0
0 formula

of Lf
∈ and ~G are second order parameters. By theorem 9 of [9] and

remarks following R( ~H) is C
6

. Hence C
5

 C
6

.
Recall from [9] the homeomorphism Ê : N 7→ Ng derived from

a bijection E : κ 7→ Vκ for κ ∈ Inac. Using this, a C
6

relation R( ~H)

may be transformed to a C
7

relation R( ~H Ê). Hence C
6

I
 C

7

.

Suppose R( ~H) is a relation in C
7

, being the projection along ~F

of the closed subset K(~F , ~H). As in the proof of theorem 5.b, Kc

can be specified by a subset DKc of Seqk+l
κ . Since κ<κ = κ DKc

can be coded as an element G of N using a “separator” value. R
may be defined in OSκ by the Σ1P

1 formula with the parameter G,



“there is a ~F such that no element of G which is a prefix of 〈~F , ~H〉”.

Hence C
7

B
 Ĉ

2

.
C
4

 Ĉ
2

is proved in theorem 19.
Suppose R(~α,~s) is a relation in Ĉ

2

, defined by Σ1 formula

φ(~β,~t, ~α,~s) with parameters ~β,~t. Let φI be the interpretation un-
der IOS; this defines a relation on Ik

Ord × I l

Seq for appropriate k, l.

In particular Ĉ
2

 C
8

. (This stretches the definition of  , but
WF’s transform to WF’s and WPS’s to WPS’s).

It follows using results of [7]. that C
8

 C
9

.
It follows using lemma 3 of [8] that C

9

 C
5

.

That Υ(C
7

) = Υ(C
4

) for κ ∈ Inac can be improved.

Theorem 22. C
7

 C
4

B
 C

7

, and so for a regular uncountable

cardinal κ such that κ<κ = κ, Υ(C
4

) = Υ(C
7

).

Proof. This follows by lemma 5.

As seen in [7], the class C
9

is of interest in connection with
function and set chains. The class Ĉ

2

provides a first-order charac-
terization. The class Ĉ

2H

has already been considered (in [13] for
example). Ĉ

2

has an advantage over Ĉ
2H

, in that the transforma-
tion Ĉ

2

 Ĉ
8

provides a structured interpretation of the first-order
formulas in the second-order ones.

There is an interpretation of Hκ+ in Lf
OS. The domain is the set

of F ∈ N , which as binary relations are well-founded, extensional,
transitive, and have a maximal element. The interpretations of ∈
and = are Σ1P

1 .

10. ∆1 classes

For any of the classes of relations C of sections 4 and 9, say
that R ∈ C is in class C∆ if R has a Π1 definition also, where Π1

is defined appropriately.

Theorem 23. a. The transformations of theorems 7, 19, 20,

and 21 map ∆ relations to ∆ relations.

b. For classes C
i

for i = 0, 1, 2, 3, if �∈ C
I

is a total order then

�∈ C∆
i

.

c. Υ(C
0

) = Υ(C∆
0

).



Proof. Part a follows by additional observations in the proofs
of the cited theorems. Part b follows by the usual proof. Part c
follows by part b and theorem 18.

11. Function chains

Suppose κ is a regular uncountable cardinal. For f, g : κ 7→ κ
say that f ≤t g if {α < κ : f(α) < g(α)} is in the club filter, and
similarly for f <t g and f ≡t g. As noted in [7], if κ ∈ Inac f, g
need only be defined for α ∈ Card. A function chain is a chain in
this order.

As also noted in [7], if κ is Mahlo, f, g defined only for α ∈ Inac
may be considered. As far as the author knows, it is unknown
whether the lengths of the function chains in the order when the
domain is Inac are no greater than those when the domain is Card.

C
9

will also be denoted Σ1
1. Let Σ1

1l-WPS denote the Σ1
1 WPS’s

� such that ≺ is also Σ1
1. For κ ∈ Inac Let UΣ1

1l-WPS denote
the Σ1

1 WPS’s �, such that the formulas define a WPS and its
strict part, at any inaccessible cardinal below κ as well (these are
denoted UΣ1

1
in [7]). As in [7], for such �, for α ∈ Fld(�), the

function fα : Inacκ 7→ κ is that where fα(λ) = Ω(�λ,α∩Vλ
). Let

CI denote the filter {C ∩ Inac : C ⊆ κ is club}. Theorem 13 of [7]
states that for κ a Mahlo cardinal, if α � β then fα ≤CI

fβ, and if
α ≺ β then fα <CI

fβ.
Suppose κ ∈ Inac. A RΣ1

1 specification of a WF ≺ is a pair

〈φ, C〉 where φ(X, Y, ~P ) is a Σ1
1 formula with class parameters Pi ⊆

Vκ, and C ⊆ κ is a club, such that φ defines a WF ≺ in Vκ and a
WF ≺λ in Vλ for λ ∈ C. A RΣ1

1 WF is one for which there is a
RΣ1

1 specification.
If κ ∈ Inac and � is a RΣ1

1 WF let C be the club of the spec-
ification, and for α ∈ Fld(�) let fα : Card ∩ κ 7→ κ be the func-
tion where for λ ∈ Card, if λ ∈ C then fα(λ) = Ω(�λ,α∩Vλ

), else
fα(λ) = 0.

Theorem 24. Suppose κ ∈ Inac and ≺ is a RΣ1
1 WF. Let C1 be

the club in the specification of ≺. If α ≺ β then there is a club

C2 ⊆ C1 such that for λ ∈ C2, α ∩ Vλ ≺λ β ∩ Vλ; in particular

fα <t fβ.



Proof. Let C be as in the proof of theorem 13.b of [7]. Let
C2 = C1 ∩ C.

It follows that if ≺ is a RΣ1
1 WF then for any α < Υ(≺) there

is a chain of length α in the order <t. If κ ∈ Inac and V = L then
by theorems 21, 17, 14 for Lκ+ , and the fact that the interpretation
under IOS of a WOS is a WPS, Υ(Σ1

1) = Υ(Σ1
1-WPS). It is a

question of interest whether, under the same hypotheses, Υ(RΣ1
1) =

Υ(RΣ1
1-WPS).

Recall from [7] the definition of f <F g on κD for a domain
D and a filter F of subsets of D. D = Card ∩ κ and F = C
where C is the club filter, and D = Inac ∩ κ and F = CI where
CI = {Inac ∩ C : C ∈ C}, are examples of interest. A function
defined on E ∈ F may be extended to D by setting the value to 0
on D − E.

Suppose κ is weakly compact. Let E denote the enforceable fil-
ter, and let D = Card. Suppose ≺ is a Σ1

1 WF. Since the statement
that ≺ is well-founded is Π1

1, there is an E ∈ E such that for λ ∈ E ,
≺λ is well-founded.

Theorem 25. Suppose κ is weakly compact and ≺ is a Σ1
1 WF.

Let E1 ∈ E be such that ≺λ is well-founded for λ ∈ E . If α ≺ β

then there is an E2 ∈ E with E2 ⊆ E1 such that for lambda ∈ E2,

α ∩ Vλ ≺λ β ∩ Vλ; in particular fα <E fβ.

Proof. Let C be as in the proof of theorem 13.b of [7]. Let
E2 = E1 ∩ C.

12. Set chains

Recall from [7] that for κ ∈ Inac and X, Y ⊆ κ, X ⊆t Y if
X − Y is thin. For X ⊆ Inacκ let H(X) = {λ ∈ X: X ∩ λ is a
stationary subset of λ}. For X, Y stationary subsets of Inacκ say
that X <R Y if Y ⊆t H(X). This relation is transitive and well-
founded; let ρR denote the rank function. Note that <R is empty
unless κ is Mahlo. By a set chain is meant a chain in this order.

Set chains for UΣ1
1l-WPS’s were defined in [7]. Modifying the

development as necessary, set chains for RΣ1
1 WF’s may be defined.

Indeed, suppose ≺ is a RΣ1
1 WF with C the club of the specifi-

cation. For α ∈ Fld(≺) and X ⊆ Inacκ∩C, say that λ ∈ Hα(X) iff



λ ∈ X and Hγ(X∩λ) is a stationary subset of λ for all γ ∈ Fld(≺λ)
where γ < fα(λ), or equivalently γ ≺λ α ∩ Vλ.

Theorem 26. Suppose κ ∈ Inac and ≺ is a RΣ1
1 WF with

C the club of the specification.

a. If β ≤ α then for any X ⊆ Inacκ ∩ C, Hβ(X) ⊇t Hα(X).
b. Suppose α ∈ Fld(≺), X ⊆ Inacκ ∩ C, and λ ∈ Inacκ ∩ C.

Then Hα∩Vλ(X ∩ λ) = Hα(X) ∩ λ.
c. If β < α then for any X ⊆ Inacκ ∩ C, H(Hβ(X)) ⊇t Hα(X).

Proof. Part a is like theorem 14 of [7], part b is like lemma 15,
and part c is like theorem 16. The proofs are almost unchanged.

Theorem 27. Suppose κ ∈ Inac and ≺ is a RΣ1
1 WF with C the

club of the specification.

a. There is a Π1
1 formula Φ≺(A) which holds in Vκ iff HA(Inac)

is stationary.

b. If κ is weakly compact then |=Vκ
Φ≺(A) for any A ∈ Fld(≺).

Proof. Lemma 18, theorem 19, and theorem 20 of [7] hold, with
suitable modifications. � is replaced by ≺. φ is not used, and ψ is
replaced by φ. Inac is replaced by Inac∩C. In the proof of theorem
20, Fld(≺) is Σ1

1, being defined by ∃Y (X ≺ Y ∨ Y ≺ X); a similar
modification is made to the proof of lemma 18.

Adapting the discussion of axiom U∆1
∞

WPS’s in [7], suppose

φ(X, Y, ~P , C) is a formula of Ls
∈.

The statement that φ defines a WF, and does so in Vκ for any
κ ∈ Card ∩ C, may be expressed by a formula Ψφ of Ls

∈ (the pa-
rameters being free variables), which will also be denoted Ψ≺. The
formula Φ≺(A) of theorem 19 of [7], adapted to RΣ1

1 WF’s, may be
given for any WF and not just Σ1

1 WF’s, although Φ≺ is no longer
Π1

1 (this observation was omitted in [7]). The axiom Ax≺ is then
Ψ≺ ⇒ ∀AΦ≺(A). This axiom may be justified as the axiom A� of
[7].

Say that a cardinal is R∆1
∞-Mahlo if Ax≺ holds in Vκ for all

∆1
∞ WF’s ≺ in Vκ. The axiom stating that these cardinals exist is

justified by collecting the universe; by fairly strict standards, these
cardinals are “built up”. Say that a cardinal κ is RΣ1

1-Mahlo if Ax≺

holds in Vκ for all RΣ1
1 WF’s ≺ in Vκ. By theorem 27 a weakly

compact cardinal is RΣ1
1-Mahlo.



There is a “gap” between RΣ1
1-Mahlo cardinals and weakly com-

pact cardinals. Closing this gap provides a specific method for at-
tempting to build up a weakly compact cardinal.
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