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1. Introduction

In a series of papers ([2], [3], [4], [5], [6], [7]) the author has
“constructed” progressively longer chains of stationary sets of in-
accessible cardinals. The existence of such chains is independent of
ZFC (indeed the existence of an inaccessible cardinal is), so that
the construction in fact yields a chain must be postulated. This
gives a quantitative theory, justifying the addition of certain ax-
ioms to ZFC, stating that the cumulative hierarchy satisfies certain
principles regarding its extendibility.

Throughout these constructions, the fact that the axiom holds
in V, if k is weakly compact has been observed; the stationary sets
are in the enforceable filter. One goal of this research has been



to obtain a weakly compact cardinal by making the stationary set
chains long enough, using the principle of continuing to extend the
cumulative hierarchy.

In [7] the set chains constructed involve the notion of a 31 WPS.
A WPS is a well-founded binary relation (WF). In this paper set
chains are obtained from ¥ WEF’s, under a certain hypothesis, and
various other facts of interest are proved. Understanding the prop-
erties of 3] WF’s is of interest in the context of set chains, and in
general.

For a cardinal k the three structures L., OS., and H,, may be
considered. In each the ¥; WE’s, and various subclasses thereof,
may be considered. If V = L these all define the same ranks. It
has been shown [12] that it is consistent that they do not.

Classes involving second order objects may be defined. These
are the classes relevant to constructing stationary set chains. The
classes of the previous paragraph for the cardinal k™ provide char-
acterizations of them. As will be seen, OS,. has advantages over H,
in this role.

In [9] it is claimed that if V' = L the ranks of the UX]-WPS’s
(defined below) are the same as the ranks of the ¥} WPS’s. The
proof given is incorrect. As of this paper, this question is still open.
Some results given here suggest that the claim may be false.

Let Card denote the class of cardinals, Inac the class of strongly
inaccessible cardinals, and write Inac, for InacNk. Let Cf(«) denote
the cofinality of an ordinal a.

2. Well-founded relations

A well-founded relation (WF) on a set S is a binary relation
< on S such that for any function f : w +— S there is an n such
that f(n+1) £ f(n) (i.e., there are no infinite descending chains).
The rank or height Q(z) of an element z € Fld(<) is an ordinal,
defined recursively as sup{Q(y) +1:y < z}. Q(=) is defined to be
sup{Q(x) + 1: z € FId(<)}, which is taken as 0 if < is empty.

If x € Fld(<) let <, denote < N(x< X x) where z~ denotes
{y 1y < z}. <, is well-founded and Q(<,) = Q(x).

Let T(=<) denote the supremum of the lengths of the ascending
chains in <. It is readily seen that T(<) < Q(=<); it is well-known
[16] that strict inequality can hold.



Recalling the definition from [7], a WPS on a set S is a binary
relation < on S satisfying the following axioms:
Tl. AKBAB=XC=A=<C
T2. ASB=A=<A
T3. AXB=B=<B
T4 A<AANB=<B= (A<BVB=A)
F. For all functions f with domain w there is an n such that
fln+1) 2 f(n) = f(n) = f(n+1)
The strict part is the relation < where A < B iff A < BA-B < A;
axiom F implies that it is well-founded. Let (=) = Q(<). For
x € F1d(=) let <, denote < N(z< X x<); this is readily seen to be
a WPS.

Theorem 1. For a WPS <, T(<) = Q(=).

Proof. Let = be the relation “z < yAy < z”. It is readily seen
that = is a congruence relation, the quotient < / = is a well-order,

and T(<)=T(</=)=Q(<x /=) =Q<). O

A WOS (well-order on a subset) is a WPS where A < BA B <
A= A= B. InaWOS < may be defined by “A < BAA # B”. For
a WOS < and an z € Fld(=), <, is a WOS. A WP (well-preorder)
is a WPS where axioms T2-T4 are replaced by A< BVB < A. A
WO (well-order) is a WPS which is both a WOS and a WP. For a
WO the rank is also called the order type.

3. OS,

The structure OS,, is defined in [7]; an earlier version, K2, may
be found in [2]. To review the definition, let Log be the language
with two sorts, Ord and Seq. Variables of Ord sort are denoted «, (3,
etc., and those of Seq sort s, ¢, etc. The functions and relations are:

0,1, a+ 0, a<pf,

Dom(s) (of sort Ord), Elem(s, «) (of sort Ord),
and equality on Ord and on Seq. As in [2], s(a) may be written for
Elem(s, &) and [s| for Dom(s).

The version in [7] has also the function symbol Rstr(s, a, 3) (of
sort Seq). The graph of this function has a A definition in the
smaller language, namely, PAVy < |t|(t(y) = s(a+v) V=P At =)
where Pis f=a+ [t| A G < |s]|.



Bounded quantifiers in Log are those of the form Vy < [ or
dv < [ where 3 is a term. Ay, Yq, and II; formulas are defined
as usual, where free variables and unbounded quantifiers may be of
either sort.

For k € Card OS,, is the structure for Log where Ord is inter-
preted as k and Seq as {f : @« — Kk : @ < k}. The functions and
relations have their self-evident interpretations; Elem has value 0 if
the index are out of range.

Various facts of interest can be proved to hold in OS, for any
k. Indeed, an axiom system Apg is given in [7], and basic facts can
be proved in it. For the version above, the axiom for Rstr may be
omitted.

Lemma 2. a. The X predicates are closed under bounded quan-
tification.
b. If G : Seq— Ord is a Xy function then there is a ¥y function
F : Ord— Ord such that for all o F(a) = G(F | a).

Proof. This is lemma 21 of [7]. An examination of the proof
shows that it can be carried out in Apg. O

Note also that @ < w is a Ag predicate, and it is not diffi-
cult to show that Peano Arithmetic is interpretable in Ags. The
sort “integer” may be added to the language, without changing the
complexity of formulas; n, m,... will be used to denote integers.

The rank of a WF on Seq is less than (k<*)*. That of a WF on
Ord is less than k™. When k = At the bounds become ((A\*)M)* =
(22)* and ATT

The language Lés is also of interest; some consideration may be
found in [9]. This adds second order function variables; these take
an ordinal argument and produce an ordinal value. OS, may be
considered as a structure for this language by interpreting second
order function symbols as elements of N' where A denotes k. As
above, t = Rstr(F, o, 3) is a AJ definable predicate.

Say that a formula of LLg is 1 if it is of the form 3F¢ where
¢ is I19.

Theorem 3. In the 1 formulas over OS, for k € Card, multi-
ple second order existential quantifiers may be combined. The L1
predicates are closed under quantification over variables of Ord sort,
and existential quantification over variables of Seq sort.



Proof. A formula 3Fy3F,¢(Fy, F1) where ¢ is I1Y may be written
as 3G'¢’ where ¢’ is obtained from ¢ by replacing F;(7) by G(T7+7+
i) (where 7 is a term). A formula Ja3F¢(a, F') may be written as
JG¢" where ¢’ is obtained from ¢ by replacing o by G(0) and F(7)
by G(1+ 7). A formula Ya3F¢(«a, F) may be written as 3GVa¢’
where ¢’ is obtained from ¢ by replacing F(7) by G(Jo(«, 7)) where
Jo is the Godel pairing function. ¢’ is IT; by lemma 21.a of [7]. A
formula 3s3F¢(s, F') may be written as 3G¢’ where ¢’ is obtained
from ¢ by replacing s by Rstr(G, G(0),1+G(0)) and F(7) by G(7+
1+ G(0)). 0O

Theorem 4. Suppose k is reqular uncountable and k<% = k. The
1P predicates are closed under universal quantification over vari-
ables of Seq sort.

Proof. Let 1 = [s|, By = sup, .5, s(7), B3 = sup(fi, f2), and
B(s) = > <57 7" Let C(Hy, Hy) denote Vsda < f((s)s =
Rstr(Hq, Hi(o), Hi(a + 1)). Let a = X(Hy, Hy, s) denote s =
Rstr(Hy, Hy(«), Hi(a+1))AVE < as # Rstr(Hs, Hi(3), Hi(3+1)).
A formula Vs3F¢(«, F') may be written as 3H,3H,3G(C(Hy, Hy) A
Vs¢' where ¢ is obtained from ¢ by replacing F(7) by G(Jo(X (Hy,
Hy,s),7)). O

The analog of this theorem holds for ¥ predicates (defined
below); proofs may be found in [13],[9].

Lemma 5. a. For any k € Card, a predicate R C N* defined
in OS, by a 3V formula of Lés s open.
b. If k is regqular uncountable and k<" = Kk the converse holds.

Proof. Part a follows by theorem 11 of [9]. For part b, suppose
R C N* is open. R can be specified by a subset Dg of (k<"%)F.
Since k<* = K, Dg can be coded as an element Fr of N using
a “separator” value. Then G € R iff “there is an s such that Fg
witnesses s € Dy and s is a prefix of G7; this statement is is X{. [

Note that part b answers a question noted following theorem 15
of [9], and renders that theorem irrelevant.

4. Classes over &



In this section, let xk be a cardinal. Let L¢ be the language of
set theory. Let L, be the xth level of the constructibility hierarchy,
considered as a structure for Le. Let H, be sets whose transitive
closure has cardinality less than k, considered as a structure for L.

Classes of relations C' will be defined, on a domain D (i.e.,
subsets of D* for some k). If defined by formulas the free variables
are restricted to D; parameters are also in D, unless otherwise
specified.

The following classes are defined.

Co: D=k, ¥y in L over L.

Ci: D = 0Ord, ¥; in Log over OS,.

Cin: D =k, ¥ in Le over Hy,.

C5: D = Seq, Y1 in Log over OS,.

Con: D = k<", ¥, in Lc over H,.

Coy: D = k<", 3 in Lc over H,, with parameters in H,..

C3: D=H,, ¥ in Lc over H,..

Say that class C' is transformable to class C’, written C' ~» C’,
if there is an injection j : D +— D’ which induces a map from C' to
C'. If Cis a class of WE’s let T(C') = sup(Y(=<)) :<€ C}. For a
class of relations C, let T(C) denote Y(C<) where C. is the WF’s
of C. Note that if C' ~» C’ then Y(C) < Y(C").

Let C] be as Cp, but with unrestricted free variables and pa-
rameters. Because there is a X1 bijection between x and L,, these
may be used interchangeably:.

Let Fy, €7, and = be as in [9]. Le may be interpreted in Log,
by interpreting € as €y and = as =;. Denote this interpretation as
Iy.

Lemma 6. For any formula ¢ of Le, ¢(Ff(ar),. .., Fr(ag)) holds
in Ly iff 77 (&) holds in OS.. If ¢ is Ny then ¢'f is A.

Proof. The first claim follows by induction on ¢. The second
follows by induction, using the fact, noted in [9], that €; and =;
are Ay; and lemma 12 of [9]. O

There is also an interpretation of Log in Le. Ord is interpreted
as the ordinals, and Seq as functions with domain an ordinal and
ordinal values. Denote this interpretation as Ic. The formulas for
the symbols of Log are Ag, except the graph of o+ (3, which is Ay,
and so A formulas translate to A; formulas.



Theorem 7.

C@ ~ C]l ~ 02

$ $
Cin ~ Con ~ Coy ~ O

Thus, T(Co) < T(Cy) < T(Cs) < T(C).

Proof. Let ¢ be a ¥; formula defining a WF in L,. By lemma
6, ¢'f defines a 3y WF in OS,, of the same rank. Further ¢’/ has
ordinal arguments, and ordinal parameters can be chosen. This
proves Cp ~ C;. Cp ~ (5 follows by interpreting ordinals as
length 1 sequences. Cp ~» Cpn and Cb ~~» Oy follow using Ic.
Cin ~ Cop ~» Cay ~ O3 follows trivially. O

As will be seen below, more can be shown if k is a successor
cardinal.

Theorem 8. IfV = L then Y(Cp) = Y(Cs).

Proof. This follows because if V' = L then H, = L, (corollary
5.2.7 of [10]). O

By cardinality, T(C;) < k*. As will be seen below, for suitable
k, T(Cz) > Kkt is consistent.

5. Coding formulas

Formulas with parameters from Seq can be coded as elements of
Seq. Formulas with parameters from Ord can be coded as elements
of Ord. Both codings will be given. Each involves a coding of finite
sequences.

In Seq a sequence (or list) of elements of ordinal length can read-
ily be coded as an element; this has uses, and finite sequences are a
special case. The list s, : v < 6 may be coded as 0" ng ... 7 s5 .. .,
where 7, = > . |s¢|. The statement that s occurs in a list [ is
Ap. This coding may be used for a pairing function on sequences.
Let Js(s,t) denote the code for the pair s, ¢; this function has a Ag
graph.

In Ord a finite sequence of elements can be coded as an element
using the Godel pairing function. The sequence «; : © < n may be



coded as Jy(n, Jo(au, ... Jo(an—1,n)...)). Functions manipulating
these codes are A;.

It is well-known that a formula ¢ without parameters can be
coded as an integer "¢, so that syntactic functions are A; in the
language of arithmetic, and hence in Log over OS,, for k € Card.

Suppose ¢ is a formula and x4, ...,z are its free variables in
alphabetic order. Suppose v; is a value of the sort of x;. Let [ be
the code for vy, ..., v;. The sentence with parameters ¢(vy, ..., vg)
can be coded by replacing {(0) = k by "¢ . This may be done for
either the codes over Seq or the codes over Ord. Over Seq, a value
v; of sort Ord may be considered a sequence of length 1, and if
k = 0 the code is a sequence of length 1. Over Ord, if £ = 0 the
code may be taken as Jy("¢ ", 0).

The code just described will be denoted "¢(vy, ..., v)". Let ®
denote the sentences with parameters and Z their codes (although
as has been observed by some authors the latter can be used for
the former).

Theorem 9. Over Seq or Ord, there is a Ay formula Truy(c) such
that for any k € Card, in OS,, for any Ny ¢(VU) € @, ¢(V) &
Trug(" () 7).

Proof. The proof will use “partial truth assignments”; see defi-
nition 1.71 of [11] for a related concept. A partial truth assignment
is a list in 4 parts, a list of terms, a list of their values, a list of for-
mulas, and a list of their truth values, satisfying certain restrictions.
These restrictions may be stated by a A; formula PTA(a).

PTA may be broken into cases; one example will be given, and
the rest left to the reader. For all terms ¢t = ¢; + ¢, occurring in
a, for i = 1,2, either ¢; is a variable or ¢; (with value list adjusted)
occurs in a; in addition v = vy 4+ v where v is the value of ¢ and
for i = 1,2 v; is the value of ;.

Trug(c) may be stated in 3; form as “for some a, PTA(a) and
¢ occurs in a and ¢ has value 1 in a”. Trug(c) may be stated in II;
form as “for all a, if PTA(a) and ¢ occurs in a then ¢ has value 1
ina”. O

Corollary 10. Over Seq or Ord, there is a ¥y formula Tru(c) such
that for any k € Card, in OS,, for any X, sentence with parameters

¢(0), ¢(v) = Tru"¢(v)7).



Proof. This follows by a standard argument. O

In L, (or H,, or any admissible set) an ordered pair of elements
may be coded as the ordered pair in the set. Sentences with pa-
rameters may be coded as in the case of OS, with parameters from
Ord. It is a standard fact of admissible set theory that there is a
¥, predicate Tru(c) which holds for a code ¢ of a ¥; sentence with
parameters iff the sentence is true (see proposition V.1.8 of [1] for
example). Although not the usual method, the method of corollary
10 can be used to prove this fact. It is only necessary to observe
that in an admissible set A, any A, sentence with parameters has
a partial truth assignment in A.

A formula ¢(d,, d, 5,, 5), where the free variables are listed in
alphabetic order, with values vp; for the variables o, and values
vg; for the variables s,;, may be coded by replacing [(0) by "¢ in
the code [ for the list ©p, ¥s. Similar remarks hold over Ord.

In an expression "¢ ' a parameter of ¢ depending on a value «
may be denoted a.

6. Constructive ordinals in Seq

This section provides adaptations of various facts about con-
structive ordinals (as found in [15] for example) to OS, for k €
Card. Essentially the same development can be carried out for H,,
but this is omitted.

Let ®; denote the ¥; formulas with no parameters and a single
free variable of sort Seq. Let Z; C w denote the integers which code
elements of ;. For e € Z; let ¢, denote the formula coded by e
and let W, denote the subset of Seq defined by ¢..

Let Fy denote the functions f : Seq — Seq which are total and
whose graph is 3; (and hence A;) without parameters in Lg. Let
fl :{fefoif[l'l] gIl}

Theorem 11. a. For any eq € I, there is an ey € Iy such that
We, () & We,(Js(er, s)) for all s.
b. Suppose f € Fi; then thereis an e € I such that Wy = We.
c. Suppose < C Seq x Seq is well-founded and f € F,. Suppose
Ve € IiVx € Fld(<)(Va' < 23lyWe(Js(2',y)) = NyWy(
(Js(x,y))). Suppose e € Iy is such that Wyy = We. Then
Vo € Fld(<)IyW.(Js(x,y)).



Proof. For part a, let Truy(e, s) = Tru(F'(ey,s)) where for e €
T, F(e,s) equals "¢.(s)7, that is, e"|s|”s. Let f € F; be such
that for any e € Z; f(e) = "Truy(Ne, Js(Ne, s))" where N, is the
numeral for e and s is the free variable of ¢.; note that Wy (s) <
We(Js(e,s)). Let ea = "oy (Js(f(Pi(t)), Pa(t)))” where Py, Py are
the “projection functions” for Jg; note that W, (Js(e, s)) < W, (Js
(f(eo),s)). Let e; = f(e2). Direct computation verifies that the re-
quirement on e; is satisfied.

For part b, let eg = "Truy(f(Pi(t)), P2(t))"; note that W,
(Js(er,8)) & Wiy (s). Now choose e; as in part a.

For part c, if there is an = € Fld(<) such that =3lyW.(Js(x,y)))
let  be a minimal such. Then 3lyWy)(Js(x,y)), whence IlyW,
(Js(z,y)), a contradiction. O

Let <o be the predicate on SeqxSeq, which is the least predicate
satisfying the following conditions, where O denotes Fld(<p).
1. 0 <o s where Dom(s) = 1 and s(0) = 0.
2. If s € O then s <p 07 s.
3. Suppose 0(~,t,p) is a 3 formula with parameters p’defining a
total function f : Ord — O such that a < § = f(a) <o f(0),
and let s = 1770(v,t,p)". Then for all o, f(a) <o s.
4. Suppose 0 is a limit ordinal and 0(~, ¢, p) is a 3 formula with
parameters p defining a predicate which is a total function
f 0 — O when restricted to arguments a < 4, such that
a<f <= fla) <o f(B), and let s = 276770(y,t,p) .
Then for all @ < 0, f(a) <o s.
5. <o is transitive.
In cases 3 and 4 call f the defining function.

Theorem 12. a. <o s well-founded.
b. Iftl <o S and ty <o S then t1 =ty or ty <oty orty <p ty.
c. If 07s € O then there is no t € O such that s <pt <o 07s.
d. If 17s € O where f is the defining function then there is no
t € O such that for all o f(a) <ot <o 17s.
e. If 2707 s € O where f is the defining function then there is
not € O such that for all a« < 0 f(a) <ot <o 2767 s.

Proof. Let Oy = {0}. Let Ony1 = O, together with the el-
ements added by clauses 2-4 of the definition. For a € Lim let
On = Up<qOp. Define the rank of s € O to be the least o such that



s € Og; then o = 41 for some 3. It is readily seen that if u <o s
then there is a ¢ € Og such that u <o t <o s where t <o s follows
by clauses 2-4. The theorem follows. O

By the theorem, for s € O the ordinal €2(s) may be defined
to be Q{(t1,t2) : t1 <o to}. Further, letting f be the defining
function, Q(0) = 0, Q(07s) = Q(s) + 1, Q(17s) = sup, Q(f(a)),
and Q(2767s) = sup,.5 QA f(a)).

Theorem 13. There is a function p € Fy such that for s € O,
p(s) € Iy and W) = {t : t <o s}.

Proof. Let f € Fy be such that for e € Zy, W) (Js(s,t)) iff
t ="0" where 6§ € @, is a formula defined by cases as follows; r is
used for the free variable of 6.

If s =0 then 0 is r #r.

If s=075then Oisr =25V It (pc(Js(s, 1)) A Truy(t',r)).

If s =175 then 6 is JadsyTta(Trus(s, a, s2) A de(Js(S2,t2)) A
Truy (t9, 7)) where Tru, is a suitable variation of Tru.

If s = 2707 then 0 is as in the previous case, except Jda is
replaced by da < 9.

Note that "6 is actually a formula defining this element of Seq
from s, etc. Then f satisfies the hypotheses of theorem 11.c. Let
p be the function whose graph is defined by W, for e as in the
conclusion of theorem 11.c. The theorem follows. O

Theorem 14. There is a function q € Fy such that for s € O,
q(s) €1, and Wq(s) = {Js(tl,tg) 1t <oty <o S}.

Proof. The proof is the same as that of the preceding theorem,
except that in the case s = 075" @ is r = &' V I (pe(Js(s', ') A
Truy (¢, r)). O

Theorem 15. There is a function s+ se with 31 graph, such that
if $1,89 € O then s1 40 s2 € O and Q(s1 +o $2) = Q(s1) + Qs2);
and also if s1 +o s2 € O then s1, 89 € O.

Proof. For convenience write W, (Z) for W, (F (%)) where F' is an
appropriate sequence coding function. Let | denote the sequence
s of length 1 where s(0) = 3. Let f € Fy be such that for e € 7,
@) (51,5, 1) satisfies the following clauses.

s=0:t=s.



s =07¢" I (pe(s1, 8, )Nt =L At=LVE=0"1)).

s = 176 if & = "Y(q,a,y)" then t = 17t where t' =
"3 (V(T, o,y ) A pe(s1,y/, 1)) else t = L.

s =276"5s": as in the previous case, except t = 2767¢'.

s(0) ¢ {0,1,2}: t = L.

Let e be as in the conclusion of theorem 11.c; then 4+ has graph
W,. O]

Other facts as in theorem 1.3.4 of [15] also follow. Note that for
s € 0 Q(s) < k*T, so in view of the remarks following theorem 8,
in some models, this version of O does not represent every »; WF
on Seq.

7. Constructive ordinals in Ord

The development of the previous section can be carried out us-
ing formulas with free variables and parameters in Ord. For con-
venience the same notation is used. Following is a list of changes
which are needed. The following changes are needed for theorem
11.

Free variables s,t,... are changed to o, 3, .. ..
Jo is used rather than Js.
Formulas of ®; have a single free variable of sort Ord.
7, is unchanged.
Fo is the f : Ord — Ord which are total and whose graph is
21.
JF is as before.
e In theorem 11.c < C Ord x Ord.
e In the proof of theorem 11.a, F(e, s) equals "¢.(s)7, that is,
Jo(e, s).

Let <o be the predicate on Ord x Ord, which is the least predi-
cate satisfying the following conditions, where O denotes Fld(<o).

1. 0<o L.

2. f a € O then a <p -4+ 1.

3. Suppose (v, 3, 7) is a 3; formula with parameters 7 defining
a total function f : Ord — O such that o < f = f(«a) <o
f(B),andlet « = "0(~, 3, 7) "-442. Then for all v, f(v) <o a.

4. Suppose ¢ is a limit ordinal and 0(~, 3, 7) is a ¥; formula with
parameters 7 defining a predicate which is a total function



f 0 — O when restricted to arguments v < 9, such that a <
B<d= fla) <o f(B),and let a = Jo("0(v,3,7)7,0) -4+ 3.
Then for all v <6, f(v) <o a.

5. <o is transitive.

Theorems 13, 14, 15, and the properties of € hold, with the
following changes. Free variables s,t,... are changed to o, (3, .. ..
Cases 07s, 17s, and 276" s are changed to a-4+ 1, -4+ 2, and
Jo(a,d) -4+ 3. In the proof of theorem 15, L denotes 4.

8. Constructive ordinals in L,

Because L, is a “recursively listed” admissible set (see [1]), con-
structive ordinals in L, for x € Card may be taken as elements of
either k or L,. Choosing them in x makes the development more
similar to that of the preceding section. In particular, the same
sentence coding may be used. The following changes are needed for
theorem 11.

e Free variables are ordinals «, 3,... (i.e., restricted to range

over Ord), and parameters are in x.

e Formulas of ®; have a single Ord free variable.

e 7,, Fo, and F; are as before.

e In theorem 1l.c < C k X K.

<o on Ord x Ord is defined as in the previous section. Theorems
13, 14, 15, and the properties of {2 hold as before.

Let 7, be the codes of the 3 formulas with ordinal parameters

and an ordinal free variable. Let ¢, be the formula with code n and
W, the set defined by ¢,,.

Theorem 16. There is a function g € Fy such that for n € I, if
W, C O then g(n) € O, and for all o € W,,, Q(a) < Q(g(n)).

Proof. In the integer case, this is lemma 1.4.1 of [15]. Suppose
¢n is Frp(x, o, ) (let g(n) = 4 if ¢ is not of this form). Let r
be the function where r(vy) equals Py(vy) if Y (Fr(Pi(7)), Pa(7), 7),
else 0. Let 0(a, 3) be the formula 3s0'(s, a, 3) where 0 states the
following.

|s| = a+1, s(a) = 3, and for v < « the following hold.

s(0) = r(0).

If v =9"+1 then s(v) = s(v) +o r(gamma).



If v € Lim then s(v) = (Jo("$(¢) =&, 7) -4+ 3) +o (7).
Now let g(n) = ("07-4+2) +o 1. O

Theorem 17. There is a function h € Fy such that for n € Iy, if
W, (e, B) is well-founded then h(n) € O, and Q(W,) < Q(h(n)).

Proof. In the integer case, this is lemma 1.4.3 of [15]. Forn € 7y,
and v < K let 7(n,7) = "¢s(&1,62) A& <y A& <47 Note that if
W, is a nonempty well-founded relation then Q(W;(,.)) < QW)
for all v and Q(W,)) = sup, .. QW) + 1.

For e € Z; and n € 7, let t(e,n) be the code for the formula in
the free variable 8, 3y3d¢;(7v,0) A Iyde(T(n,7), 5).

Let f € Fi be such that Wy = {(n, g(t(e,n)))}. Let eq be such
that W,y = We,. Let h be the function where h(n) = g(t(eo,7n)).
Then W,, is the graph of h.

If W, is empty the theorem is readily seen. Otherwise Wy, =
{h(7(n,7)) : v < Kk}, and so by theorem 16,

h(r(1,7)) <o glt(eo, m)) = h(1).
By induction on Q(W,), QW) < QA(T(7,7))) < Qh(n)).
Thus, Q(W;) = sup, Q(Wr(,)) +1 < Q(h(n)). O

Fori = 0,1, 2 let O; be the version of O defined in sections 7,6,5
respectively. For a class C of relations let C-WF be the WF’s of
C', and similarly for C-WPS, C-WOS, and C-WO (by an earlier
convention Y (C-WF) is denoted Y(C)).

Theorem 18. a. Q(Op) < Q2(01) < QO5).
b. Fort=0,1,2, Q(C-WO0) < Q(03) < Q(C4-WOS)
< QCG3-WPS) < T(Gy).
c. T(Cp) < QUOp) and Q(Cy-WOS) < Q(Co-WO).

Proof. For part a, a Op code can be transformed to a Oy code,
and a Oy code can be transformed to a O, code.

For part b, Q(O;) < Q(Ci-WOS) follows by theorems 14 and 12.
The other inequalities are immediate.

For part ¢, T(Cp) < Q(Op) follows by theorem 17.

Suppose R(a, 3) € Co-WOS. If Q(R) < k then clearly Q(R) <
Q(Cp-WO), so suppose Q(R) > k. FId(R) is defined by a formula
(v, B, 7) where 1 is Ag. Let g : k — Kk be the function where
g(a) = p iff there is an s such that Dom(s) = « and s(a) = 3
and Vy < ap(Pi(s(7)), Pa(s(7)), @) and Vy < § < as(y < 0 A



Py(s(7)) # s(P2(5)))). The relation R(g(a),g(5)) is a WO of the
same rank as R. Thus, Q(Cp-WOS) < Q(Cp-WO). O

As noted in section 5, for suitable x, Q(0,) < Q(C3-WO) is
consistent. Whether Q(0O1) < Q(C1-WO) can be consistent is a
question of interest.

9. Classes over kT

For k € Card, a class C of section 4 over x* will be denoted
C. Further classes of interest may be defined using second order
methods over k.

As in [8], let L{ denote L with set variables added, and let LL
denote L with function variables added. Recall Lés from section
3. Let Ips denote the interpretation of Log in LE given in [7]. Say
that a formula is X if it is the translation under Iog of a %) formula
of Los. As in [9], let NV, denote (V,)"*, let N denote k", and let
%1% denote the Lusin class in either N} or N'* for an integer k.

The following class is defined.

Cy: D=N, 31" in Lés over OS,.

Theorem 19. Supposg k € Card. Then Copy ~ Cy4 ~ Cb. Thus,
T(Cg) - T(Cgm) - T(Cz[H) == T(Cﬂ)

Proof. Suppose R C N'* is defined in H,.+ by a ¥, formula with
parameters.

An element F' € N may be considered a binary relation R on k,
where R(a, ) ift F(Jy(a, 5)) # 0. Recall from [7] that the Godel
pairing function Jy is AJ. Given such a relation Fc, the notation
a€f will be used for Fe(Jy(ar, B)) # 0.

Let P;(F¢) hold iff as a binary relation Fc is well-founded and
extensional. F¢ is well-founded iff Vs(Dom(s) = w = In < Dom(s)
(s(n+1)¢s(n))). Fe is extensional iff AGVa, f(a # 5 = (G(Jy(a,
B))¢a < G(Jo(a, 8))€BR)). Thus, P, is BiF.

A formula ¢ of the language of set theory, with value & where
a; < k for the free variables, can be coded as a value "¢(&)" which
is less than . This can be done so that formulas defining predicates
of interest are AJ.

Let Py(Fc, ) hold iff ¢ is true in F¢ where « = "¢7. P, may be
written as 3Gy, Go(VOPy(G1,Ge, Fe, B) N Gi(«) # 0) where Pj is



a A? formula stating that G;(f3) satisfies the recursion for a truth
value assignment to the sentence with Godel number 3. This may
be broken into cases. Most of these are given in example 1.20
of [14]. The case § = "Jzy may be written as G1(f) # 0 <
Gl('—w@(g)/xj) 75 0. Thus, P2 is E%P.

The notation [¢] will be used for Py(Fe, o).

For X € N let P3(Fc, X,a) hold iff a represents X in Fg.
Following lemma 1.25 of [14], let P}(F¢, Fy, ;) be the 31F formula
AT (Y, B(a < B = Fo()EFL(B)) AVa(F.(a)Ea,) ANVa(aca, =
F.(F}(a)) = a)). Then Py may be written as 3F, a,.(Py (Fe, Fy,
ag) Ao s dne = G] AV A(X(B) = v = [a(B) = 3] A X(B) #
v = [&(B) #4])). Thus, Ps is %17,

An element p € H,+ can be coded as an element P € N
by enumerating the transitive closure of {p} as z, and letting
P(Jo(a,B)) # 0 iff o, € xg. Let Py(Fc, P,a) hold iff o repre-
sents P in Fe. P, may be written as 3G35(Vy, 0(P(Jo(7,0)) #
0 (GEBAGH)EBNG(Y)EG(S))) NaEBAVY(1ES = ady)).
Thus, P, is 17

Suppose gb()?,ﬁ) is a ¥; formula, the X; are restricted to range
over N, and the p; are elements of H,+. Using the Downward
Lowenheim-Skolem theorem, ¢ holds in H,+ iff (using obvious nota-
tion) 3F, dx, @y(PL(Fe)APs(Fe, X, @x)APy(Fe, P, a,) APy(Fe, ¢
(dx,d,)™)) holds in OS/.

Thus, R is defined in OS, by a ©1¥ formula with second order
parameters. and so C’le ~ Oy

Cy ~ C'g follows because there is an interpretation of Lés in
Los using the parameter x which induces such a transformation.
Ord is interpreted as k, Seq is interpreted as {s € Seq : Dom(s) <
k A Ran(s) C k}. N is interpreted as {s € Seq : Dom(s) = k A
Ran(s) C k}.

The second claim follows by the first claim and theorem 7. [

For a ¥{¥ version of Copy ~ Oy see proposition 2.4 of [13].

Theorem 20. Suppose k € Card. Then Cup ~ éﬂ, and so T(OHH)
= T(Cll);

Proof. The theorem is proved by modifying the composite
transformation Chy ~~» C4 ~ (5. For & an ordinal in H,+ let
P5(F¢, &, «) hold iff a represents £ in Fe. This may be written as



3s,, sh(Dom(s) = £ AVS < Dom(s)(s.(B)€a) AVB, v <&(B <y =
So(B)E€5o(7)) ANVB(BEQ = s,(s"(8)) = 3)). Thus, Ps is ¥ over
OS,+.

Suppose QS(E, p) is a ¥ formula over H,+, the & are restricted
to range over ordinals, and the p; are ordinals. Then ¢ holds in H,+
iff 3Fc, de, a,(P1(Fe) A Ps(Fe, &, ae) N Ps(Fe, P, ap) A Py(Fe,™(de,
@,)"")) holds in OS,+. This shows Cyp ~ Cy.

The second claim follows from the first, and theorem 7. O

As noted in [9] it is consistent that Y(C5) > Y(Cy). By theorem
1.1 of [12], if k is a regular uncountable cardinal with <" = x then
it is consistent that there is a >; well-order of H,+ of order type
> k1T, whence that there is a ¥; WOS with field % of rank > ™.

For k € Card, the following classes of relations are defined.

Cs: D= (V)% 2l in LL over V.

Cs: D =N,, ©iF.

Cy: D=N, 3L,

Cg: D= ]Seq’ Z{ over V.

Co: D =2% %1 in L over V.

Say that C' 5o provided k is inaccessible, and C' Z o pro-
vided k is regular uncountable and K< = k.

Theorem 21. C5 ~ Cp N Cy A Cy ~ é’z ~ Cg ~ (g ~ Cs,
and so for k € Inac, T(Cs) = T (Cs) = YT (C7) = T(Cy) =T (Cs) =
T(Cs) = T(Co).

Proof. Suppose R(H) is a relation in Cs; by corollary 5 of [8] R
is defined by a formula IF VY (T, F.G H ) where 1 is a A formula
of LL and G are second order parameters. By theorem 9 of [9] and
remarks following R(H ) is Cg. Hence Cs5 ~~ Cj.

Recall from [9] the homeomorphism E : N — N, derived from
a bijection £ : k — V,, for k € Inac. Using this, a Cg relation R(ﬁ)

may be transformed to a Cy relation R(H?). Hence Cjy %0y
Suppose R(I?I) is a relation in C7, being the projection along F
of the closed subset K(F, H). As in the proof of theorem 5.b, K¢
can be specified by a subset Dgc of Seq’”l. Since k<" = k Dge
can be coded as an element G of N using a “separator” value. R
may be defined in OS, by the ¥} formula with the parameter G,



“there is a F such that no element of ¢ which is a prefix of (F, H)”.
Hence C5 A C’g.

Cy ~ éz is proved in theorem 19.

Suppose R(&, ) is a relation in Cp, defined by %, formula
qb(@ t,d, ) with parameters 3.t Let ¢; be the interpretation un-
der Ipg; this defines a relation on [ kOr q % ]lSeq for appropriate k, (.

In particular Co ~» C. (This stretches the definition of ~~, but
WE’s transform to WF’s and WPS’s to WPS’s).

It follows using results of [7]. that Cg ~» Cg.

It follows using lemma 3 of [8] that Cy ~» Cs. O

That T(C7) = Y(C,) for k € Inac can be improved.

Theorem 22. C; ~ (), 2 C7, and so for a reqular uncountable
cardinal Kk such that k<" = k, T(Cy) = Y(Cy).

Proof. This follows by lemma 5. 0

As seen in [7], the class Cg is of interest in connection with
function and set chains. The class C» provides a first-order charac-
terization. The class Coy has already been considered (in [13] for
example). C’z has an advantage over C’zm, in that the transforma-
tion Cs ~» Cg provides a structured interpretation of the first-order
formulas in the second-order ones.

There is an interpretation of H,+ in Lés. The domain is the set
of F '€ N, which as binary relations are well-founded, extensional,
transitive, and have a maximal element. The interpretations of €
and = are X1

10. A, classes

For any of the classes of relations C of sections 4 and 9, say
that R € C is in class C? if R has a II; definition also, where II;
is defined appropriately.

Theorem 23. a. The transformations of theorems 7, 19, 20,
and 21 map A relations to A relations.
b. For classes Cs fori=0,1,2,3, if <€ C} is a total order then
=€ CA.
c. T(Cp) =T(C5).



Proof. Part a follows by additional observations in the proofs
of the cited theorems. Part b follows by the usual proof. Part ¢
follows by part b and theorem 18. O

11. Function chains

Suppose k is a regular uncountable cardinal. For f,g: k — K
say that f <; g if {a < k: f(a) < g(«)} is in the club filter, and
similarly for f <; g and f =; g. As noted in [7], if ¥ € Inac f,g
need only be defined for o € Card. A function chain is a chain in
this order.

As also noted in [7], if k is Mahlo, f, g defined only for o € Inac
may be considered. As far as the author knows, it is unknown
whether the lengths of the function chains in the order when the
domain is Inac are no greater than those when the domain is Card.

Co will also be denoted X7. Let X1,-WPS denote the ¥ WPS’s
< such that < is also X}. For x € Inac Let UX7-WPS denote
the E% WPS’s <, such that the formulas define a WPS and its
strict part, at any inaccessible cardinal below k as well (these are
denoted Uy in [7]). As in [7], for such =, for a € Fld(=2), the
function f, : Inac, +— k is that where fo(A\) = Q(Zrary). Let
C; denote the filter {C NInac : C' C k is club}. Theorem 13 of [7]
states that for x a Mahlo cardinal, if o < 3 then fo <¢, f3, and if
o < B then fo <¢, fa.

Suppose k£ € Inac. A R} specification of a WF < is a pair
(¢, C) where ¢(X,Y, P) is a X! formula with class parameters P, C
V., and C' C k is a club, such that ¢ defines a WF < in V, and a
WF <, in V) for A € C. A RX} WF is one for which there is a
R} specification.

If Kk € Inac and < is a RE% WEF let C be the club of the spec-
ification, and for a € Fld(=) let f, : Card Nk +— K be the func-
tion where for A € Card, if A € C then fo(A) = Q(Zrar1y), €else

fa()‘) = 0.

Theorem 24. Suppose r € Inac and < is a RXI WF. Let C; be
the club in the specification of <. If ¢ < B then there is a club
Cy C O such that for A € Cy, anNVy <\ BNVy\, in particular
fa <t .f,@'



Proof. Let C be as in the proof of theorem 13.b of [7]. Let
Cg = Cl NC. ]

It follows that if < is a RX] WF then for any a < T(<) there
is a chain of length « in the order <;. If K € Inac and V = L then
by theorems 21, 17, 14 for L,+, and the fact that the interpretation
under Ipg of a WOS is a WPS, T(X]) = T(X]-WPS). It is a
question of interest whether, under the same hypotheses, T(RX1) =
T(REL-WPS).

Recall from [7] the definition of f <z g on P for a domain
D and a filter F of subsets of D. D = Card Nk and F = C
where C is the club filter, and D = Inac Nk and F = C; where
C; = {InacNC : C € C}, are examples of interest. A function
defined on E € F may be extended to D by setting the value to 0
on D —FE.

Suppose k is weakly compact. Let £ denote the enforceable fil-
ter, and let D = Card. Suppose < is a ¥.] WF. Since the statement
that < is well-founded is I}, there is an F € £ such that for A € &,
< is well-founded.

Theorem 25. Suppose r is weakly compact and < is a ¥} WF.
Let E; € & be such that < is well-founded for A € £. If o < 3
then there is an FEy € € with Fy C Ey such that for lambda € Es,
anVy <\ BNV in particular fo <¢ fa.

Proof. Let C be as in the proof of theorem 13.b of [7]. Let
E,=FnNnC. U

12. Set chains

Recall from [7] that for k € Inac and XY C k, X C; Y if
X — Y is thin. For X C Inac, let HX) ={A € X: XNAisa
stationary subset of A}. For XY stationary subsets of Inac, say
that X <z Y if Y C; H(X). This relation is transitive and well-
founded; let pr denote the rank function. Note that <g is empty
unless x is Mahlo. By a set chain is meant a chain in this order.

Set chains for U3],-WPS’s were defined in [7]. Modifying the
development as necessary, set chains for RX} WEF’s may be defined.

Indeed, suppose < is a RY] WF with C' the club of the specifi-
cation. For a € Fld(<) and X C Inac, NC, say that A € H*(X) iff



A € X and HY(X NA) is a stationary subset of A for all v € Fld(<)
where 7 < fo()), or equivalently v <, aa N V).

Theorem 26. Suppose € Inac and < is a RY] WF with
C' the club of the specification.

a. If B < a then for any X C Inac, N C, H*(X) D, H*(X).

b. Suppose o € Fld(<), X C Inac, N C, and X € Inac, N C.
Then H*"Y(X N A\) = H*(X) N .

c. If B < a then for any X C Inac, N C, H(H?(X)) D, H*(X).

Proof. Part a is like theorem 14 of [7], part b is like lemma 15,
and part c is like theorem 16. The proofs are almost unchanged. [

Theorem 27. Suppose k € Inac and < is a RXT WF with C the
club of the specification.
a. There is a I} formula ®_(A) which holds in Vi, iff H*(Inac)

18 stationary.
b. If k is weakly compact then f=y, P-(A) for any A € Fld(<).

Proof. Lemma 18, theorem 19, and theorem 20 of [7] hold, with
suitable modifications. < is replaced by <. ¢ is not used, and v is
replaced by ¢. Inac is replaced by InacNC'. In the proof of theorem
20, Fld(<) is X}, being defined by Y (X <Y VY < X); a similar
modification is made to the proof of lemma 18. O

Adapting the discussion of axiom Uxi. WPS’s in [7], suppose
»(X,Y, P, C) is a formula of LE.

The statement that ¢ defines a WF, and does so in V,, for any
k € Card N C, may be expressed by a formula U, of L{ (the pa-
rameters being free variables), which will also be denoted ¥_. The
formula ®_(A) of theorem 19 of [7], adapted to R} WE’s, may be
given for any WF and not just ¥1 WF’s, although ®_ is no longer
I} (this observation was omitted in [7]). The axiom Ax. is then
U, = VAP (A). This axiom may be justified as the axiom A< of
[7].

Say that a cardinal is RA! -Mahlo if Ax. holds in V, for all
Al, WF’s < in V. The axiom stating that these cardinals exist is
justified by collecting the universe; by fairly strict standards, these
cardinals are “built up”. Say that a cardinal x is R¥1-Mahlo if Ax_
holds in V,, for all RY{ WF’s < in V. By theorem 27 a weakly
compact cardinal is R3{-Mahlo.



There is a “gap” between RY.}-Mahlo cardinals and weakly com-

pact cardinals. Closing this gap provides a specific method for at-
tempting to build up a weakly compact cardinal.
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