A LOWER BOUND ON THE LENGTH OF BASIC MINIMAL 1-(3t+1,3) DESIGNS

Martin Dowd

1613 Wintergreen Pl.
Costa Mesa, CA 92626, USA
e-mail: MartDowd@aol.com

Abstract: In a previous paper the author found some minimal 1-(v,3) designs with large b, by exhaustive search. Here some further such are found, by more ad-hoc methods. A construction is given for v = 3t + 1 for t ≥ 2, where b grows quadratically with v.

AMS Subj. Classification: 05B05
Key Words: 1-designs, linear programming

1. Introduction

Suppose v and k are integers with 1 ≤ k ≤ v. A 1-design with parameters v and k is a v row by b column matrix for some b, with elements either 0 or 1, such that each column contains k 1’s, and each row contains r 1’s for some r. Such a matrix is exactly the incidence matrix of a “biregular bipartite graph”, with v vertices of degree r in one class, and b vertices of degree k in the other class. The notation “1-(v,k) design will be used to denote such designs.

There is a well-known system of linear equations associated with 1-designs. Various facts of interest about this system are proved in [1]. The following further fact is of interest, both for the theory of 1-designs and for computations.
Theorem 1. Suppose D is a basic minimal 1-design, and S is the set of its columns. Then D is determined by S.

Proof. Suppose first that S is nondegenerate, i.e., $|S| = v$ where there are v rows. Let M be the matrix $[C_1,\ldots,C_v]$ where $S = \{C_1,\ldots,C_v\}$. Let x be the column vector of indeterminates x_{C_1},\ldots,x_{C_v}. The system $Mx = J_{v \times 1}$ (see [1] for notation) has a unique solution x. D is obtained when x is converted to an integer vector with the integers having no common divisor. In general, suppose T_1 and T_2 are extensions of S to bases. It is readily seen that in the primal simplex tableau there is a sequence of level 0 pivots from T_1 to T_2. Further, the solutions for T_1 and T_2 have the same restrictions to $\{x_C : C \in S\}$. See [5] for terminology.

2. Long designs

Theorem 6 and 7 of [1] give bounds on the length b of minimal and basic minimal 1-(v,k) designs. It is of interest to both design theory and to linear programming theory to obtain improvements to these bounds, and to obtain lower bounds. As seen in [1], these questions are of interest even for $k = 2$.

For $5 \leq v \leq 8$ the exact bound for basic minimal 1-designs was determined in [1] by exhaustive search using vertex enumeration. For $k = 3$ these values are $b=5$, $b=21$, and $b=48$ respectively. (There is an error in Table 1 of [1]; the number of non-isomorphic basic minimal 1-$(6,3)$ designs is 3, not 4).

In this paper, a lower bounds for basic minimal solutions with $k = 3$ will be given. Before giving this, a method for obtaining examples and lower bounds for small v will be given, which uses random search rather than exhaustive search.

Using notation as in [1], let M be the matrix with v rows labeled $0,\ldots,v-1$ and $\binom{v}{k}$ columns, the k element subsets of $\{0,\ldots,v-1\}$. Let M^+_H be the matrix derived from M by subtracting row 0 from the other rows and replacing it by a row of all 1’s. A vector x is a solution to $Mx = J_{v \times 1}$ iff $y = (v/k)x$ is a solution to $M^+_H y = e_0$ where e_s denotes the (column) unit vector with 1 in row s. It follows that the null spaces of M and M^+_H are the same, and so the sets of columns which are bases is the same (labeling a column of M^+_H with the column of M from which it is derived).
Solutions to the LP $M_H^T x = e_0, x_C \geq 0$ for all C will be considered. This LP is in standard form, and is readily solved using the primal simplex method, as described in [5] for example. The two-stage method for finding an initial feasible basis may be avoided, if a feasible basis is known. The columns of it may be transformed into distinct unit vectors by an arbitrary sequence of pivots on the columns of the basis.

For $\gcd(v,k) = 1$ define the cyclic design to be that where column i is $\{0+i \mod v, \ldots, k-1+i \mod v\}$.

Theorem 2. For $\gcd(v,k) = 1$ the cyclic design is basic.

Proof. Since $\gcd(v,k) = 1$, $1 + x + \cdots + x^{k-1}$ and $x^v - 1$ are relatively prime. The theorem follows by circulant matrix theory (see [3]).

Theorem 3. Suppose $\gcd(v,k) = 1$ and $v = qk + s$ where $q \geq 2$ and $0 < s < k$. Let x be the vector where $x_C = k/v$ if C has 1’s in rows kt to $kt+k-1$ for some t with $0 \leq t \leq q-2$; $x_C = 1/v$ if C is one of the columns of the cyclic design in rows $k(t-1)$ to $v-1$; and $x_C = 0$ otherwise. Then x is a solution to $M_H^T x = e_0$ which maximizes $x_{\{0,\ldots,k-1\}}$.

Proof. Let B be the matrix where for $j < v-k$ column j has 1’s in rows $j, \ldots, j+k-1$; and in the remaining columns there is a copy of the cyclic design in the lower right. B is block upper triangular, where the blocks along the diagonal are invertible (using theorem 2), so B is basic. Direct computation shows that $Bx = (k/v)J_{v \times 1}$. Direct computation also shows that the top row of $(B_H^+)^{-1}$ has k/v in column 0 and $-1/v$ in the other columns. Let c be the (row) cost vector, with -1 in column 0 and 0’s elsewhere. Let c_B be the similarly defined vector of length v. As noted in section 2.6 of [5], the relative cost vector of the simplex tableau at the basis B equals $c - c_B(B_H^+)^{-1}M_H^+$. Direct computation shows that this is 1 in column C if $0 \in C$, except for column 0, which is 0; and 0 in the remaining columns.

The maximum value of x_C for the cyclic design is $1/v$. Starting from this basis, the simplex algorithm may be run with random pivots. The basic feasible solution with the largest value of b can be monitored. For $k = 3$, this was done for $7 \leq v \leq 20$ with
gcd(v, 3) = 1. For a given v, 100,000 repetitions were performed. In figure 1, the value of \(b/v^3 \) is plotted; \(b \) seems to be growing faster than cubically.

![Figure 1: \(b/v^3 \) vs. \(v \)](image)

3. Lower bound on \(b \)

The computations of [1] show that there is a single basic minimal 1-(7,3) design of length 21; figure 2 shows the columns, with their multiplicities. This has been arranged so that a pattern may be seen, which may be generalized (some designs of length 10 were also examined).

![Figure 2. 1-(7,3) design of length 21](image)

Theorem 4. If \(v = 3t + 1 \) where \(t \geq 2 \) then there is a 1-(v,3) design with \(b = (2t - 1)v \).
Proof. Let B denote the $v \times v$ matrix of the basic columns of M. Row 0 of B consists of $2t + 1$ 1’s, followed by 0’s. Column $2t - 1 + j$ for $0 \leq j < t$ has 1’s in rows $3j + 1, 3j + 2, 3j + 3$. Define $m_1 = 6t - 5$, $m_2 = 4t - 3$, $m_3 = 2t - 1$; let I denote an identity matrix, J an all 1’s matrix, and K the $2t - 4 \times t - 2$ 0-1 matrix which has 1’s in rows $2j$ and $2j + 1$ in column j. Rows 1 to $3t$ and columns 0 to $2t + 1$ are given by the following block matrix:

\[
\begin{array}{cccc}
1 & t & t - 2 & 2 \\
\hline
\text{t} & 0 & I & 0 & 0 \\
2t - 4 & 0 & 0 & K & 0 \\
1 & 0 & 0 & 0 & J \\
2 & J & 0 & 0 & I \\
1 & 0 & J & 0 & 0 \\
m_3 & 2 & 2 & 1
\end{array}
\]

The left column gives the block heights, the top row gives the block widths, and the bottom row the multiplicities. Columns $2t + 1$ through $3t - 1$ have multiplicity m_1, and column $3t$ has multiplicity m_2. One readily verifies that the rows of the design have $6t - 3$ 1’s.

4. Bounding x_{max}

Solutions with $x_{[0,...,k-1]} = k/v$ are clearly of little interest. This suggests modifying the LP by adding constraints $x_C + y_C = x_{\text{max}}$, $y_C \geq 0$. Basic feasible solutions of $M^+_D x = e_0$, with integer value having a greatest common divisor of 1, are minimal; this is a fact of LP theory, tacitly assumed in [1]. With slack variables added as just indicated, the restriction of a basic solution to the x_C may no longer be basic in the original LP.

The cost of the slack variables must be specified. In ordinary use this is 0 (see section 3-2 of [2]). For this paper, this value is adopted.

By results of [1], for a minimal solution which is not basic, $b \leq 588$. The modified LP was run with values of $x_{\text{max}} = n/d$, where $2 \leq d \leq 84$ or $d \leq 588$ and $d \mod 7 = 0$, $1/7 \leq n/d \leq 3/7$, and $\gcd(n, d) = 1$ (there are 4333 such n/d).
Each LP has a solution where the cost is x_{max}; further b equals d if $d \mod 7 = 0$, else $7d$. Using the 33395 basic minimal solutions (see [1]), it may be determined that for each modified LP, the optimum solution found by the simplex method is an integral linear combination of basic minimal solutions. In the cases where x_{max} is the cost of a basic minimal solution, the optimal solution is basic minimal. These facts suggest that for $v = 7$, $k = 3$, minimal solutions are basic minimal; further remarks are omitted here.

References

http://dx.doi.org/10.12732/ijpam.v85i2.14

doi: 10.1112/jlms/s1-31.4.445
