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Abstract: In a previous paper the author found some minimal 1-
(v,3) designs with large b, by exhaustive search. Here some further
such are found, by more ad-hoc methods. A construction is given
for v = 3t + 1 for t ≥ 2, where b grows quadratically with v.
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1. Introduction

Suppose v and k are integers with 1 ≤ k ≤ v. A 1-design with
parameters v and k is a v row by b column matrix for some b, with
elements either 0 or 1, such that each column contains k 1’s, and
each row contains r 1’s for some r. Such a matrix is exactly the
incidence matrix of a “biregular bipartite graph”, with v vertices of
degree r in one class, and b vertices of degree k in the other class.
The notation “1-(v,k) design will be used to denote such designs.

There is a well-known system of linear equations associated with
1-designs. Various facts of interest about this system are proved in
[1]. The following further fact is of interest, both for the theory of
1-designs and for computations.



Theorem 1. Suppose D is a basic minimal 1-design, and S is the
set of its columns. Then D is determined by S.

Proof. Suppose first that S is nondegenerate, i.e., |S| = v where
there are v rows. Let M be the matrix [C1, . . . , Cv] where S =
{C1, . . . , Cv}. Let x be the column vector of indeterminates xC1

, . . . ,
xCv

. The system Mx = Jv×1 (see [1] for notation) has a unique so-
lution x. D is obtained when x is converted to an integer vector
with the integers having no common divisor. In general, suppose
T1 and T2 are extensions of S to bases. It is readily seen that in
the primal simplex tableau there is a sequence of level 0 pivots
from T1 to T2. Further, the solutions for T1 and T2 have the same
restrictions to {xC : C ∈ S}. See [5] for terminology.

2. Long designs

Theorem 6 and 7 of [1] give bounds on the length b of minimal
and basic minimal 1-(v,k) designs. It is of interest to both design
theory and to linear programming theory to obtain improvements
to these bounds, and to obtain lower bounds. As seen in [1], these
questions are of interest even for k = 2.

For 5 ≤ v ≤ 8 the exact bound for basic minimal 1-designs was
determined in [1] by exhaustive search using vertex enumeration.
For k = 3 these values are b=5, b=21, and b=48 respectively. (There
is an error in Table 1 of [1]; the number of non-isomorphic basic
minimal 1-(6,3) designs is 3, not 4).

In this paper, a lower bounds for basic minimal solutions with
k = 3 will be given. Before giving this, a method for obtaining
examples and lower bounds for small v will be given, which uses
random search rather than exhaustive search.

Using notation as in [1], let M be the matrix with v rows labeled
0, . . . , v−1 and

(

v

k

)

columns, the k element subsets of {0, . . . , v−1}.
Let M+

H be the matrix derived from M by subtracting row 0 from
the other rows and replacing it by a row of all 1’s. A vector x is
a solution to Mx = Jv×1 iff y = (v/k)x is a solution to M+

Hy = e0

where es denotes the (column) unit vector with 1 in row s. It follows
that the null spaces of M and M+

H are the same, and so the sets
of columns which are bases is the same (labeling a column of M+

H

with the column of M from which it is derived).



Solutions to the LP M+

Hx = e0, xC ≥ 0 for all C will be consid-
ered. This LP is in standard form, and is readily solved using the
primal simplex method, as described in [5] for example. The two-
stage method for finding an initial feasible basis may be avoided,
if a feasible basis is known. The columns of it may be transformed
into distinct unit vectors by an arbitrary sequence of pivots on the
columns of the basis.

For gcd(v, k) = 1 define the cyclic design to be that where
column i is {0 + i mod v, . . . , k − 1 + i mod v}.

Theorem 2. For gcd(v, k) = 1 the cyclic design is basic.

Proof. Since gcd(v, k) = 1, 1 + x + · · · + xk−1 and xv − 1 are
relatively prime. The theorem follows by circulant matrix theory
(see [3]).

Theorem 3. Suppose gcd(v, k) = 1 and v = qk + s where q ≥ 2
and 0 < s < k. Let x be the vector where xC = k/v if C has 1’s
in rows kt to kt + k − 1 for some t with 0 ≤ t ≤ q − 2; xC = 1/v
if C is one of the columns of the cyclic design in rows k(t − 1) to
v − 1; and xC = 0 otherwise. Then x is a solution to M+

H = e0

which maximizes x{0,...,k−1}.

Proof. Let B be the matrix where for j < v−k column j has 1’s
in rows j, . . . , j+k−1; and in the remaining columns there is a copy
of the cyclic design in the lower right. B is block upper triangular,
where the blocks along the diagonal are invertible (using theorem
2), so B is basic. Direct computation shows that Bx = (k/v)Jv×1.
Direct computation also shows that the top row of (B+

H)−1 has k/v
in column 0 and −1/v in the other columns. Let c be the (row)
cost vector, with −1 in column 0 and 0’s elsewhere. Let cB be
the similarly defined vector of length v. As noted in section 2.6 of
[5], the relative cost vector of the simplex tableau at the basis B
equals c − cB(B+

H)−1M+

H . Direct computation shows that this is 1
in column C if 0 ∈ C, except for column 0, which is 0; and 0 in the
remaining columns.

The maximum value of xC for the cyclic design is 1/v. Starting
from this basis, the simplex algorithm may be run with random
pivots. The basic feasible solution with the largest value of b can
be monitored. For k = 3, this was done for 7 ≤ v ≤ 20 with



gcd(v, 3) = 1. For a given v, 100,000 repetitions were performed.
In figure 1, the value of b/v3 is plotted; b seems to be growing faster
than cubically.
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Figure 1: b/v3 vs. v

3. Lower bound on b

The computations of [1] show that there is a single basic minimal
1-(7,3) design of length 21; figure 2 shows the columns, with their
multiplicities. This has been arranged so that a pattern may be
seen, which may be generalized (some designs of length 10 were
also examined).
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Figure 2. 1-(7,3) design of length 21

Theorem 4. If v = 3t + 1 where t ≥ 2 then there is a 1-(v,3)
design with b = (2t − 1)v.



Proof. Let B denote the v × v matrix of the basic columns of
M . Row 0 of B consists of 2t + 1 1’s, followed by t 0’s. Column
2t− 1 + j for 0 ≤ j < t has 1’s in rows 3j +1, 3j + 2, 3j + 3. Define
m1 = 6t − 5, m2 = 4t − 3, m3 = 2t − 1; let I denote an identity
matrix, J an all 1’s matrix, and K the 2t − 4 × t − 2 0-1 matrix
which has 1’s in rows 2j and 2j + 1 in column j. Rows 1 to 3t and
columns 0 to 2t + 1 are given by the following block matrix:

1 t t − 2 2
t 0 I 0 0

2t − 4 0 0 K 0
1 0 0 0 J
2 J 0 0 I
1 0 J 0 0

m3 2 2 1

The left column gives the block heights, the top row gives the
block widths, and the bottom row the multiplicities. Columns 2t+1
through 3t−1 have multiplicity m1, and column 3t has multiplicity
m2. One readily verifies that the rows of the design have 6t − 3
1’s.

4. Bounding xmax

Solutions with x{0,...,k−1} = k/v are clearly of little interest. This
suggests modifying the LP by adding constraints xC + yC = xmax,
yC ≥ 0. Basic feasible solutions of M+

Hx = e0, with integer value
having a greatest common divisor of 1, are minimal; this is a fact
of LP theory, tacitly assumed in [1]. With slack variables added as
just indicated, the restriction of a basic solution to the xC may no
longer be basic in the original LP.

The cost of the slack variables must be specified. In ordinary
use this is 0 (see section 3-2 of [2]). For this paper, this value is
adopted.

By results of [1], for a minimal solution which is not basic,
b ≤ 588. The modified LP was run with values of xmax = n/d,
where 2 ≤ d ≤ 84 or d ≤ 588 and d mod 7 = 0, 1/7 ≤ n/d ≤ 3/7,
and gcd(n, d) = 1 (there are 4333 such n/d).



Each LP has a solution where the cost is xmax; further b equals
d if d mod 7 = 0, else 7d. Using the 33395 basic minimal solutions
(see [1]), it may be determined that for each modified LP, the op-
timum solution found by the simplex method is an integral linear
combination of basic minimal solutions. In the cases where xmax

is the cost of a basic minimal solution, the optimal solution is ba-
sic minimal. These facts suggest that for v = 7, k = 3, minimal
solutions are basic minimal; further remarks are omitted here.
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