A LOWER BOUND ON THE LENGTH OF BASIC MINIMAL 1-(3t+1,3) DESIGNS

Martin Dowd

1613 Wintergreen Pl. Costa Mesa, CA 92626, USA e-mail: MartDowd@aol.com

Abstract: In a previous paper the author found some minimal 1-(v,3) designs with large b, by exhaustive search. Here some further such are found, by more ad-hoc methods. A construction is given for v = 3t + 1 for $t \ge 2$, where b grows quadratically with v.

AMS Subj. Classification: 05B05

Key Words: 1-designs, linear programming

1. Introduction

Suppose v and k are integers with $1 \le k \le v$. A 1-design with parameters v and k is a v row by b column matrix for some b, with elements either 0 or 1, such that each column contains k 1's, and each row contains r 1's for some r. Such a matrix is exactly the incidence matrix of a "biregular bipartite graph", with v vertices of degree r in one class, and b vertices of degree k in the other class. The notation "1-(v,k) design will be used to denote such designs.

There is a well-known system of linear equations associated with 1-designs. Various facts of interest about this system are proved in [1]. The following further fact is of interest, both for the theory of 1-designs and for computations.

Theorem 1. Suppose D is a basic minimal 1-design, and S is the set of its columns. Then D is determined by S.

Proof. Suppose first that S is nondegenerate, i.e., |S| = v where there are v rows. Let M be the matrix $[C_1, \ldots, C_v]$ where $S = \{C_1, \ldots, C_v\}$. Let x be the column vector of indeterminates x_{C_1}, \ldots, x_{C_v} . The system $Mx = J_{v \times 1}$ (see [1] for notation) has a unique solution x. D is obtained when x is converted to an integer vector with the integers having no common divisor. In general, suppose T_1 and T_2 are extensions of S to bases. It is readily seen that in the primal simplex tableau there is a sequence of level 0 pivots from T_1 to T_2 . Further, the solutions for T_1 and T_2 have the same restrictions to $\{x_C : C \in S\}$. See [5] for terminology.

2. Long designs

Theorem 6 and 7 of [1] give bounds on the length b of minimal and basic minimal 1-(v,k) designs. It is of interest to both design theory and to linear programming theory to obtain improvements to these bounds, and to obtain lower bounds. As seen in [1], these questions are of interest even for k = 2.

For $5 \le v \le 8$ the exact bound for basic minimal 1-designs was determined in [1] by exhaustive search using vertex enumeration. For k=3 these values are b=5, b=21, and b=48 respectively. (There is an error in Table 1 of [1]; the number of non-isomorphic basic minimal 1-(6,3) designs is 3, not 4).

In this paper, a lower bounds for basic minimal solutions with k=3 will be given. Before giving this, a method for obtaining examples and lower bounds for small v will be given, which uses random search rather than exhaustive search.

Using notation as in [1], let M be the matrix with v rows labeled $0, \ldots, v-1$ and $\binom{v}{k}$ columns, the k element subsets of $\{0, \ldots, v-1\}$. Let M_H^+ be the matrix derived from M by subtracting row 0 from the other rows and replacing it by a row of all 1's. A vector x is a solution to $Mx = J_{v\times 1}$ iff y = (v/k)x is a solution to $M_H^+y = e_0$ where e_s denotes the (column) unit vector with 1 in row s. It follows that the null spaces of M and M_H^+ are the same, and so the sets of columns which are bases is the same (labeling a column of M_H^+ with the column of M from which it is derived).

Solutions to the LP $M_H^+x=e_0$, $x_C\geq 0$ for all C will be considered. This LP is in standard form, and is readily solved using the primal simplex method, as described in [5] for example. The two-stage method for finding an initial feasible basis may be avoided, if a feasible basis is known. The columns of it may be transformed into distinct unit vectors by an arbitrary sequence of pivots on the columns of the basis.

For gcd(v, k) = 1 define the cyclic design to be that where column i is $\{0 + i \mod v, \dots, k - 1 + i \mod v\}$.

Theorem 2. For gcd(v, k) = 1 the cyclic design is basic.

Proof. Since gcd(v,k) = 1, $1 + x + \cdots + x^{k-1}$ and $x^v - 1$ are relatively prime. The theorem follows by circulant matrix theory (see [3]).

Theorem 3. Suppose gcd(v, k) = 1 and v = qk + s where $q \ge 2$ and 0 < s < k. Let x be the vector where $x_C = k/v$ if C has 1's in rows kt to kt + k - 1 for some t with $0 \le t \le q - 2$; $x_C = 1/v$ if C is one of the columns of the cyclic design in rows k(t - 1) to v - 1; and $x_C = 0$ otherwise. Then x is a solution to $M_H^+ = e_0$ which maximizes $x_{\{0,\dots,k-1\}}$.

Proof. Let B be the matrix where for j < v - k column j has 1's in rows $j, \ldots, j + k - 1$; and in the remaining columns there is a copy of the cyclic design in the lower right. B is block upper triangular, where the blocks along the diagonal are invertible (using theorem 2), so B is basic. Direct computation shows that $Bx = (k/v)J_{v\times 1}$. Direct computation also shows that the top row of $(B_H^+)^{-1}$ has k/v in column 0 and -1/v in the other columns. Let c be the (row) cost vector, with -1 in column 0 and 0's elsewhere. Let c_B be the similarly defined vector of length v. As noted in section 2.6 of [5], the relative cost vector of the simplex tableau at the basis B equals $c - c_B(B_H^+)^{-1}M_H^+$. Direct computation shows that this is 1 in column C if $0 \in C$, except for column 0, which is 0; and 0 in the remaining columns.

The maximum value of x_C for the cyclic design is 1/v. Starting from this basis, the simplex algorithm may be run with random pivots. The basic feasible solution with the largest value of b can be monitored. For k = 3, this was done for $7 \le v \le 20$ with

gcd(v,3) = 1. For a given v, 100,000 repetitions were performed. In figure 1, the value of b/v^3 is plotted; b seems to be growing faster than cubically.

Figure 1: b/v^3 vs. v

3. Lower bound on b

The computations of [1] show that there is a single basic minimal 1-(7,3) design of length 21; figure 2 shows the columns, with their multiplicities. This has been arranged so that a pattern may be seen, which may be generalized (some designs of length 10 were also examined).

X	X	X	X	X		
	X				X	
		X			X	
			X	X	X	
X			X			X
X				X		X
	X	X				X
3	2	2	1	1	7	5

Figure 2. 1-(7,3) design of length 21

Theorem 4. If v = 3t + 1 where $t \ge 2$ then there is a 1-(v,3) design with b = (2t - 1)v.

Proof. Let B denote the $v \times v$ matrix of the basic columns of M. Row 0 of B consists of 2t+1 1's, followed by t 0's. Column 2t-1+j for $0 \le j < t$ has 1's in rows 3j+1, 3j+2, 3j+3. Define $m_1 = 6t-5$, $m_2 = 4t-3$, $m_3 = 2t-1$; let I denote an identity matrix, J an all 1's matrix, and K the $2t-4\times t-2$ 0-1 matrix which has 1's in rows 2j and 2j+1 in column j. Rows 1 to 3t and columns 0 to 2t+1 are given by the following block matrix:

	1	t	t-2	2
t	0	Ι	0	0
2t - 4	0	0	K	0
1	0	0	0	J
2	J	0	0	I
1	0	J	0	0
	m_3	2	2	1

The left column gives the block heights, the top row gives the block widths, and the bottom row the multiplicities. Columns 2t+1 through 3t-1 have multiplicity m_1 , and column 3t has multiplicity m_2 . One readily verifies that the rows of the design have 6t-3 1's.

4. Bounding x_{max}

Solutions with $x_{\{0,\dots,k-1\}} = k/v$ are clearly of little interest. This suggests modifying the LP by adding constraints $x_C + y_C = x_{\text{max}}$, $y_C \geq 0$. Basic feasible solutions of $M_H^+ x = e_0$, with integer value having a greatest common divisor of 1, are minimal; this is a fact of LP theory, tacitly assumed in [1]. With slack variables added as just indicated, the restriction of a basic solution to the x_C may no longer be basic in the original LP.

The cost of the slack variables must be specified. In ordinary use this is 0 (see section 3-2 of [2]). For this paper, this value is adopted.

By results of [1], for a minimal solution which is not basic, $b \le 588$. The modified LP was run with values of $x_{\text{max}} = n/d$, where $2 \le d \le 84$ or $d \le 588$ and $d \mod 7 = 0$, $1/7 \le n/d \le 3/7$, and $\gcd(n,d) = 1$ (there are 4333 such n/d).

Each LP has a solution where the cost is $x_{\rm max}$; further b equals d if $d \mod 7 = 0$, else 7d. Using the 33395 basic minimal solutions (see [1]), it may be determined that for each modified LP, the optimum solution found by the simplex method is an integral linear combination of basic minimal solutions. In the cases where $x_{\rm max}$ is the cost of a basic minimal solution, the optimal solution is basic minimal. These facts suggest that for v = 7, k = 3, minimal solutions are basic minimal; further remarks are omitted here.

References

- [1] M. Dowd, Solutions to the 1-Design Equations, *Int. J. Pure Appl. Math.* **85**, No. 2 (2013), 383–394. http://dx.doi.org/10.12732/ijpam.v85i2.14
- [2] G. Hadley, Linear Programming, Addison-Wesley, 1962.
- [3] A. W. Ingleton, The Rank of Circulant Matrices, *J. London Math. Soc.* **s1-31**, no. 4 (1956), 445–460. doi: 10.1112/jlms/s1-31.4.445
- [4] "http://www-cgrl.cs.mcgill.ca/~avis/C/lrs.html"
- [5] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, 1982.